THOMAS BLUM	Norman Christ	Masashi Hayakawa	Taku Izubuchi
UConn/RBRC	Columbia	Nagoya	BNL/RBRC
Luchang Jin	N CHULWOO JUNG	Christoph Lehner	CHENG TU
UConn/RBRC	BNL	BNL	UConn

and the RBC/UKQCD collaborations

Jun 18, 2018

Helmholtz-Institut Mainz

Second Plenary Workshop of the Muon g-2 Theory Initiative

HLbL Connected diagrams

- Permutations of the three internal photons are not shown.
- There should be gluons exchange between and within the quark loops, but are not drawn.

Disconnected diagrams

- One diagram (the biggest diagram below, referred to as 2+2) do not vanish even in the SU(3) limit.
- We extend the method and computed this leading disconnected diagram as well.

- Permutations of the three internal photons are not shown.
- There should be gluons exchange between and within the quark loops, but are not drawn.
- We need to make sure that the loops are connected by gluons by "vacuum" subtraction. So the diagrams are 1-particle irreducible.

Disconnected diagram beyond 2+2

- STILL WORKING IN PROGRESS.
- The right loop has been calculated by Christoph Lehner (can also be used to calculated disconnected HVP) and saved to disk.
- The left loop can be evaluated by two point source propagators at x and y. We can then randomly sample x and y, similar to the way we evaluted the connected diagrams.

Pion Transition Form Factor (TFF) on Lattice: RBC results

THOMAS BLUM	Norman Christ	Masashi Hayakawa	Taku Izubuchi
UConn/RBRC	Columbia	Nagoya	BNL/RBRC
LUCHANG JIN	Chulwoo Jung	Christoph Lehner	Cheng Tu
UConn/RBRC	BNL	BNL	UConn

and the RBC/UKQCD collaborations

Jun 18, 2018 Helmholtz-Institut Mainz Second Plenary Workshop of the Muon g-2 Theory Initiative

Outline

We will be working in Euclidean space by default.

- PION TFF FORMULATION
- Model and Lattice results
- Contribution to HLbL with pion TFF

Pion TFF formulation

$$\langle 0|Ti J_{\mu}(u) i J_{\nu}(v)|\pi^{0}(\vec{p})\rangle \tag{1}$$

Momentum space TFF $F(q_1^2, q_2^2)$ (X.D. Ji, C. Jung, [hep-lat/0101014]):

$$\int d^4 u \, e^{-iq_1 \cdot u - iq_2 \cdot v} \, \langle 0|Ti \, J_{\mu}(u) \, i \, J_{\nu}(v)|\pi^0(\vec{p})\rangle = \frac{i}{4 \, \pi^2 F_{\pi}} \, \epsilon_{\mu,\nu,\rho,\sigma} \, q_{1,\rho} \, q_{2,\sigma} \, F(q_1^2, q_2^2). \tag{2}$$

Coordinate space TFF $F_c(x, z^2)$ (previously presented at UConn by Cheng Tu):

$$= \frac{\langle 0|Ti J_{\mu}(u) i J_{\nu}(v)|\pi^{0}(\vec{p})\rangle}{4\pi^{2} F_{\pi}} \epsilon_{\mu,\nu,\rho,\sigma} \left(-i \partial_{\rho}^{u}\right) \left(-i \partial_{\sigma}^{v}\right) F'(p \cdot (u-v), (u-v)^{2}) e^{ip \cdot v},$$
(3)

Let r = u - v, $F_c(x, r^2)$ is the Fourier transformation of $F'(p \cdot r, r^2)$:

$$F'(p \cdot r, r^2) = \int_{-\infty}^{\infty} dx F_c(x, r^2) e^{ixp \cdot r}.$$
(4)

Interestingly, we can prove that:

$$F_c(x, r^2) = 0 \quad \text{if } x < 0 \text{ or } x > 1.$$
 (5)

Pion TFF formulation

$$= \frac{\langle 0|Ti J_{\mu}(u) i J_{\nu}(v)|\pi^{0}(\vec{p})\rangle}{4\pi^{2} F_{\pi}} \epsilon_{\mu,\nu,\rho,\sigma}(-i\partial_{\rho}^{u})(-i\partial_{\sigma}^{v})} \times \left\langle 0 \left| \int_{0}^{1} dx F_{c}(x,(u-v)^{2})\pi^{0}(xu+(1-x)v) \right| \pi^{0}(\vec{p}) \right\rangle$$
(6)
$$= \frac{i}{4\pi^{2} F_{\pi}} \epsilon_{\mu,\nu,\rho,\sigma} \times \left\langle 0 \left| \int_{0}^{1} dx \left[-\partial_{\rho}^{u} F_{c}(x,(u-v)^{2}) \right] \partial_{\sigma} \pi^{0}(xu+(1-x)v) \right| \pi^{0}(\vec{p}) \right\rangle$$
(7)

The coordinate space form factor $F_c(x, r^2)$ can be interpreted this way:

- The dependence on x describe the distribution of the pion source along the segment between the two EM currents.
- In the r² → 0 limit, the function can be factorized into PION DISTRIBUTION AMPIITUDES (PDA). At tree level, F_c(x, r²) is the same as PDA after normalization.
 F_c(x, r²) ~ x(1-x).
- The parameter r = (u v) is the separation between the two EM currents.

Pion TFF formulation: proof for $0 \leqslant x \leqslant 1$

Define

$$\hat{P}_{\pi^0} = \int \frac{d^3 p}{(2\pi)^3} |\pi^0(\vec{p})\rangle \frac{1}{2 E_{\pi^0,\vec{p}}} \langle \pi^0(\vec{p})|.$$
(8)

$$\left\langle 0 \left| \pi^{0}(x) \, \hat{P}_{\pi^{0}} \, \pi^{0}(y) \right| 0 \right\rangle = G(x-y) = \int \frac{d^{4}p}{(2\pi)^{4}} \frac{e^{ip \cdot (x-y)}}{p^{2} + m_{\pi}^{2}} \tag{9}$$

$$\left\langle 0 \middle| T \left[i J_{\mu}(u) i J_{\nu}(v) \right] \hat{P}_{\pi^{0}} \pi^{0}(w) \middle| 0 \right\rangle$$

$$= \left\langle 0 \middle| \frac{i}{4 \pi^{2} F_{\pi}} \epsilon_{\mu,\nu,\rho,\sigma} \int_{-\infty}^{\infty} dx \left[-\partial_{\rho}^{u} F_{c}(x,(u-v)^{2}) \right] \partial_{\sigma} \pi^{0}(x u + (1-x) v) \hat{P}_{\pi^{0}} \pi^{0}(w) \middle| 0 \right\rangle$$

$$= \frac{i}{4 \pi^{2} F_{\pi}} \epsilon_{\mu,\nu,\rho,\sigma} \int_{-\infty}^{\infty} dx \left[-\partial_{\rho}^{u} F_{c}(x,(u-v)^{2}) \right] \partial_{\sigma} G(x u + (1-x) v - w).$$

$$(10)$$

Let w = xu + (1 - x)v, the above expression should not be singular when x > 1 or x < 0. Therefore $F_c(x, (u - v)^2)$ should be zero for x outside of [0, 1].

Pion TFF formulation

Let f(|r|) be the function which describes the strength of the $\pi^0 \gamma \gamma$ coupling:

$$\int_0^1 dx \left[-\partial_\rho^r F_c(x, r^2) \right] = 2 z_\rho \left[\frac{2F_\pi^2}{3} \frac{1}{(r^2)^2} \right] f(|r|).$$
(11)

10/29

- Based on Chiral anomaly, $(\pi^2/2) \int_0^\infty (2F_\pi^2/3) f(r) 2r dr = 1$, (F(0,0) = 1).
- Based on OPE, in the $r \to 0$ limit, $f(|r|) \to 1$, $(F(Q^2, Q^2) \to 8\pi^2 F_\pi^2/(3Q^2))$.

For HLbL, the long distance contribution should be dominated by the π^0 exchange process, where the π^0 propagator for a relatively long distance, while the two photons created/annihilated the pion are fairly close.

Therefore, the x dependence of $F_c(x, r^2)$ is less important. Instead, we should focus on the total strength f(|r|).

Outline

We will be working in Euclidean space by default.

- Pion TFF formulation
- MODEL AND LATTICE RESULTS
- Contribution to HLbL with pion TFF

Pion TFF formulation

Vector Meson Dominance model

$$F^{\rm VMD}(q_1^2, q_2^2) = \frac{m_V^2}{q_1^2 + m_V^2} \frac{m_V^2}{q_2^2 + m_V^2}$$
(12)

Two Ends model

$$F^{\rm TE}(q_1^2, q_2^2) = \frac{m_V^2/2}{q_1^2 + m_V^2} + \frac{m_V^2/2}{q_2^2 + m_V^2}$$
(13)

Lowest Meson Dominance model

$$F^{\text{LMD}}(q_1^2, q_2^2) = \frac{8\pi^2 F_\pi^2}{3m_V^2} F^{\text{TE}}(q_1^2, q_2^2) + \left(1 - \frac{8\pi^2 F_\pi^2}{3m_V^2}\right) F^{\text{VMD}}(q_1^2, q_2^2)$$
(14)

Relation between Momentum space form and Coordinate space form:

$$F(q_1^2, q_2^2) = \int d^4 z \, e^{-iq_1 \cdot r} \int_0^1 dx \, F_c(x, r^2) \, e^{ixp \cdot r}$$

=
$$\int_0^1 dx \int d^4 r \, e^{-i((1-x)q_1 - xq_2) \cdot r} \, F_c(x, r^2)$$
(15)

Pion TFF formulation: VMD model

$$F^{\text{VMD}}(q_1^2, q_2^2) = \frac{m_V^2}{q_1^2 + m_V^2} \frac{m_V^2}{q_2^2 + m_V^2}$$

= $\int_0^1 dx \frac{m_V^4}{[(1-x)(q_1^2 + m_V^2) + x(q_2^2 + m_V^2)]^2}$
= $\int_0^1 dx \frac{m_V^4}{[[(1-x)q_1 - xq_2]^2 + m_V^2 - x(1-x)m_\pi^2]^2}$ (16)

Recall

$$F(q_1^2, q_2^2) = \int_0^1 dx \int d^4r \, e^{-i((1-x)q_1 - xq_2) \cdot r} F_c(x, r^2) \tag{17}$$

$$F_c^{\text{VMD}}(x, r^2) = \int \frac{d^4p}{(2\pi)^4} \frac{m_V^4 e^{ip \cdot r}}{[p^2 + m_V^2 - x(1 - x)m_\pi^2]^2}$$
(18)

The dependence on x is very weak.

Pion is uniformly created/annihilated between the two EM currents.

Pion TFF formulation: TE model

$$F^{\rm TE}(q_1^2, q_2^2) = \frac{m_V^2/2}{q_1^2 + m_V^2} + \frac{m_V^2/2}{q_2^2 + m_V^2} = \int_0^1 dx \frac{\delta(x) + \delta(x-1)}{2} \frac{m_V^2}{((1-x)q_1 - xq_2)^2 + m_V^2}$$
(19)

Recall

$$F(q_1^2, q_2^2) = \int_0^1 dx \int d^4r \, e^{-i((1-x)q_1 - xq_2) \cdot r} F_c(x, r^2) \tag{20}$$

$$F_c^{\rm TE}(x,r^2) = \frac{\delta(x) + \delta(x-1)}{2} \int \frac{d^4p}{(2\pi)^4} \frac{m_V^2 e^{ip \cdot r}}{p^2 + m_V^2}$$
(21)

The value for x is either 0 or 1.

Pion is created/annihilated at the two ends of the segment between the two EM currents location.

Pion TFF formulation: LMD model

Lattice results

RBC/UKQCD $24^3 \times 64$ Iwasaki+DSDR ensemble: $m_{\pi} = 139$ MeV, $a^{-1} = 1.015$ GeV.

With $z_t = 0$, f(|z|) can be evaluated with $(t_{sep} = 10a)$

$$\begin{aligned} \langle 0|Ti J_{\mu}(z) i J_{\nu}(0)|\pi^{0}(\vec{p}=0)\rangle \\ &= \frac{i}{4\pi^{2} F_{\pi}} \epsilon_{\mu,\nu,\rho,\sigma} 2 z_{\rho} i p_{\sigma} \left[\frac{2F_{\pi}^{2}}{3} \frac{1}{(z^{2})^{2}}\right] f(|z|), \end{aligned} \tag{23}$$

Using 16 configurations and the point source propagators generated by computing the leading disconnected contribution to HLbL, we obtained:

Outline

We will be working in Euclidean space by default.

- Pion TFF formulation
- Model and Lattice results
- CONTRIBUTION TO HLBL WITH PION TFF

Contribution to HLbL with pion TFF

We will evaluate with the following parameter.

$$m_V = 770 \,\mathrm{MeV} \quad F_\pi = 93 \,\mathrm{MeV}$$
 (26)

The QED part, we use the weighting function developed in [arXiv:1705.01067] by us.

Contribution to HLbL with pion TFF: VMD

Discretization effect: a = 0.223 fm, 0.171 fm, 0.114 fm.

The unit of x-axis is 0.223 fm, the lattice spacing of the coarsest lattice.

19/29

 \diamond

+

 \diamond

+

 \diamond

+

24nt48-coarse-2-phys sub

32nt64-coarse-phys sub

48nt96-phys sub

48nt96-phys no-sub

24nt48-coarse-2-phys no-sub

32nt64-coarse-phys no-sub

Contribution to HLbL with pion TFF: VMD

Finite volume effect: $a = 0.223 \,\text{fm}$, $L = 5.5 \,\text{fm}$, $7.3 \,\text{fm}$, $10.9 \,\text{fm}$.

- 32nt64-coarse-2-phys sub \diamond
- 32nt64-coarse-2-phys no-sub +
 - 48nt96-coarse-2-phys sub \diamond
- 48nt96-coarse-2-phys no-sub +

The unit of x-axis is 0.223 fm, the lattice spacing of the lattices.

Contribution to HLbL with pion TFF: VMD

Extrapolations:

- Infinite volume: use the largest volume $L = 10.9 \,\mathrm{fm}$ as approximation.
- Continuum: extrapolate from the two lattice spacing $a = 0.223 \,\mathrm{fm}, 0.114 \,\mathrm{fm}, \mathcal{O}(a^2)$ scaling.

Errorbars are statistical only.

Contribution to HLbL with pion TFF: TE

Discretization effect: a = 0.223 fm, 0.171 fm, 0.114 fm.

The unit of x-axis is 0.223 fm, the lattice spacing of the coarsest lattice.

22/29

 \diamond

+

 \diamond

+

 \diamond

+

24nt48-coarse-2-phys sub

32nt64-coarse-phys sub

48nt96-phys sub

48nt96-phys no-sub

24nt48-coarse-2-phys no-sub

32nt64-coarse-phys no-sub

Contribution to HLbL with pion TFF: TE

Finite volume effect: $a = 0.223 \,\text{fm}$, $L = 5.5 \,\text{fm}$, $7.3 \,\text{fm}$, $10.9 \,\text{fm}$.

- 32nt64-coarse-2-phys no-sub +
 - 48nt96-coarse-2-phys sub \diamond
- 48nt96-coarse-2-phys no-sub +

The unit of x-axis is 0.223 fm, the lattice spacing of the lattices.

Contribution to HLbL with pion TFF: TE

Extrapolations:

- Infinite volume: use the largest volume $L = 10.9 \,\mathrm{fm}$ as approximation.
- Continuum: extrapolate from the two lattice spacing $a = 0.223 \,\mathrm{fm}, 0.114 \,\mathrm{fm}, \mathcal{O}(a^2)$ scaling.

Errorbars are statistical only.

Contribution to HLbL with pion TFF: LMD

Discretization effect: a = 0.223 fm, 0.171 fm, 0.114 fm.

The unit of x-axis is 0.223 fm, the lattice spacing of the coarsest lattice.

24nt48-coarse-2-phys sub \diamond

- 24nt48-coarse-2-phys no-sub +
 - 32nt64-coarse-phys sub \diamond
 - 32nt64-coarse-phys no-sub +
 - 48nt96-phys sub \diamond
 - 48nt96-phys no-sub +

Contribution to HLbL with pion TFF: LMD

26/29

 \diamond

+

 \diamond

+

 \diamond

+

24nt48-coarse-2-phys sub

32nt64-coarse-2-phys sub

48nt96-coarse-2-phys sub

24nt48-coarse-2-phys no-sub

32nt64-coarse-2-phys no-sub

48nt96-coarse-2-phys no-sub

Finite volume effect: $a = 0.223 \,\text{fm}$, $L = 5.5 \,\text{fm}$, $7.3 \,\text{fm}$, $10.9 \,\text{fm}$.

Contribution to HLbL with pion TFF: LMD

Extrapolations:

- Infinite volume: use the largest volume $L = 10.9 \,\mathrm{fm}$ as approximation.
- Continuum: extrapolate from the two lattice spacing $a = 0.223 \,\mathrm{fm}, 0.114 \,\mathrm{fm}, \mathcal{O}(a^2)$ scaling.

Errorbars are statistical only.

Conclusion

- We developed coordinate space formulation of the pion transition form factor (TFF). It turned out to be pion distribution amplitude at short distance.
- We defined f(r) to describe the r (relative coordinate between the two EM currents) dependence of the coordinate space TFF.
- We calculated f(r) for three models (VMD, TE, LMD) and using lattice data (24D).
- LMD model is designed to satisfy both the Chiral anomaly constraint and the OPE constraint. Among the three models, it also agrees the lattice data the most.
- We computed the π^0 contribution to HLbL using the three models using lattice.
 - The total results agree with the momentum space more analytical evalution.
 - We also obtained the models results in the long distance region, which can be used to correct the QCD finite volume errors of the lattice calculation of HLbL.

Thank You

Thank You!