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__ Our aim: pseudoscalar poles in HLbL

e We want the pseudoscalar (7°,7,7) pole contributions to aj "
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e Commonly off-shellness is coined for high-energy link
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To my point of view one of the next obstacles ahead (tomorrow talks?)
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__ The pseudoscalar poles in brief

e |t amounts to calculate

e Result expressed as weighted integral over space-like on-shell form factors
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__ The pseudoscalar poles in brief

e |t amounts to calculate
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e Result expressed as weighted integral over space-like on-shell form factors
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__ The pseudoscalar poles in brief

e |t amounts to calculate

o,k

e Result expressed as weighted integral over space-like on-shell form factors
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notice the peaks at the relevant low energies
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__ The pseudoscalar poles in brief

e |t amounts to calculate

e Result expressed as weighted integral over space-like on-shell form factors
e Trivial if form factors god-given ... Mathematica not so kind yet!
® Only ab-initio theoretical: lattice — finite points: interpolation!

e Nature solves QCD for us: experiment — reduced points: extrapolation!
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e Framework: avoid model-building (as model-independent as possible)
e Keep track of systematic errors
® Emphasize the low-energy region

® |Incorporate theoretical high-energy constraints
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__ The pseudoscalar poles in brief

e |t amounts to calculate

o,k

e Result expressed as weighted integral over space-like on-shell form factors
e Trivial if form factors god-given ... Mathematica not so kind yet!
® Only ab-initio theoretical: lattice — finite points: interpolation!

e Nature solves QCD for us: experiment — reduced points: extrapolation!

e A natural framework for this hihgly desired!

Our Proposal: use of Padé approximants )
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e How to approximate (not model) non-perturbative hadronic functions?

Laurent exp.: Fryyr(q?) = Z cn(q® — M?)" X next pole(cuts)

n=-—1
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__ Padé approximants: singly virtual

e How to approximate (not model) non-perturbative hadronic functions?

Q 2
PAs: Fry\+(q°) = Py = Rggz% = Fﬁv‘/(l +bpq® + ..+ O(qNHVHl))

e Convergence not only to meromorphic but Stieltjes — beyond large-N.

Convergence for sequences: P{V, Pﬁ, P,\’\,’+17 ... analytic related

o Mixed g% = 0 and g% = oo expansions compatible — pQCD constraints

e Convergence to HVP or sophisticated FF DR analysis in EPJ C73, 2668

A powerful (non-trivial) case: both real and imaginary parts in loops

e Cannot overemphasize: spectroscopy is theory-forbiden!

e Obtain the derivatives from data (later)
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e Again nice convergence properties, as for instance, pQCD models

Fpyy M? In <1+le/M2)
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__ Padé approximants: double virtual

e Commonly referred to as Canterbury approximants

2 2 N QN(Q%a q§) N(M) _Q(R) 2i 2j
y* (q17 q2) = CM Q (R ) = Zi,j Cn,m "q1 43
RM(q17 )

Again, match derivatives to get cQ Rog
e Again nice convergence properties, as for instance, pQCD models

1
1—x)Q2 + M?

1
lo, 2 2 2
FP'yg*'y*(le Q2) = FP'y'yM /Q dXXQf + (
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__ Padé approximants: double virtual

e Commonly referred to as Canterbury approximants

F 2 2y _ ~N _ QN(q%aqg) Ruy) — N(M) _Q(R) 2i 2j
Tyt (q17 ¢72) =Ly = RM(q ) Q ( ) = Zi,j Cn,m "q1 43
17

Again, match derivatives to get cQ Rog
e Again nice convergence properties, as for instance, pQCD models
6x(1 — x)
xQ7 + (1 -x)@3

e Simple example with appropriate power-like behavior

FESCD™(QF, Q3) :2FSter)\a/ dx

Pry*y*

1 1
_>
1+ cga(qf +63) + cfaaiad 1+ cga(ai +a3)
Again, benefits of not doing spectroscopy!
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__Inputs: data fitting

e Inputs: sequences data fitting (not just fitting models)
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__Inputs: data fitting

e Inputs: sequences data fitting (not just fitting models)

Reduced
Data Set

0;fit 1:f
Py PO b, P X
N . 0;fit 4;fit b 5;fit
Py Py — bp, .., PTT R PUTTX

o Let's see impact on aj; """ (fact)

Fit
P? 145
=% B—
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__Inputs: data fitting

e Inputs: sequences data fitting (not just fitting models)

Reduced | P, : Py — bp ., Py (/\
Data Set | P{': PP = bp oy PE eE Y PR X

o Let's see impact on aj; """ (fact)

Fit Der

P? 145 132
P3 — 133
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__Inputs: data fitting

e Inputs: sequences data fitting (not just fitting models)

New larger | Pp. : PR s pp ..., PYAC P X
Data Set | Py’ : PYRC = bp, ..., PR 2 PR X

o Let's see impact on aj; """ (fact)

Fit Der New Fit

P? 145 132 14.0
P — 133 13.4
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e Inputs: sequences data fitting (not just fitting models)
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__Inputs: data fitting

e Inputs: sequences data fitting (not just fitting models)

New larger | PNy PP = bp, oy P ‘/\
Data Set | PY': PP o e, L, PIM 20 PRI X

o Let's see impact on aj; """ (fact)

Fit Der New Fit New Der

P? 145 132 14.0 13.1
Pi — 133 13.4 13.3

Advantage of PAs vs. resonance fits: interrelation, convergence, systematics
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Application to HLbL and results

— Reconstructing Fp+(QF, Q3)

e Simplest approach: C2(Q?, @3)

Fp1+(0,0)

G(Q5 Q) = T @ T )

o Next element: G3(QZ, Q3)

Cl(Q2 Qz)_ FPw'v(O:O)(1+“'1(le+Q§)+al,101203)
PR 1 B1(Q2 4 Q2) + Ba(QF + QD)+ B QR+ Boa @ Q2(Q2 4 Q2) + B2 QF QR

Reconstruction

1.Reduce to Padé Approximants
2.Reproduce the OPE behavior (high energies)

2
(2Fx) (1 _8 + 0(as(02))> = B22=0,011,02,1

F 1
- -

™= 302
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e Simplest approach: C2(Q?, @3)
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— Reconstructing Fp+(QF, Q3)

e Simplest approach: C2(Q?, @3)

Fp~(0,0
C(Q, &) = W%

o Next element: G3(QZ, Q3)

CHQ?, Q2) = Fpy(0,0)(1 4 a1(QF + Q3) + 01,1 Q7 Q3)
231y X2 ) = 14 51(Q2+ Q2) + B2(QF + Q3) + 1,1 Q%2Q2 + £21Q2Q3(Q? + Q3)

Reconstruction

1.Reduce to Padé Approximants

2.Reproduce the OPE behavior (high energies)

3.Reproduce the low energies (ap;1,1)
Be generous: all configurations with no poles = ag;‘lrjl <api1 < a‘,?;‘f‘l
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— Reconstructing Fp+(QF, Q3)

e Simplest approach: C2(Q?, @3)

Fp1+(0,0)

G(Q5 Q) = T @ T )

o Next element: G3(QZ, Q3)
Fp4~(0,0)(1 + (Yl(le + sz) + (¥1A1Q12022)

1,12 A2y
C(QL Q) = T3 T Q) + (T Q) + I QBQE + Fa QR+ QD)

Reconstruction

1.Reduce to Padé Approximants

2.Reproduce the OPE behavior (high energies)
3.Reproduce the low energies (arpf’;il'i1 <ap11< agﬁ”‘l
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__ Pseudoscalar-pole contribution: Final results

—CP(QF, Q3)—

allPLiP 101 OPE (aps,1 = 2b3)

0 65.3(1.4)F (2.4)5, [2.8]:
7 17.1(0.6)(0.2), [0.6]
o 16.0(0.5)¢(0.3)s, 0.6

Total 98.42.9]
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__ Pseudoscalar-pole contribution: Final results
— (@7, @3)—

allPLiP 101 OPE (aps,1 = 2b3)

0 65.3(1.4)F(2.4)5_ [2.8];
17.1(0.6)£(0.2)5, [0.6]¢
16.0(0.5)r(0.3)s,,[0.6];

™
n

o
Total 98.4[2.9];
1 2 2
_Cz (Ql ) Qz )_
E e [ P11 a1
70 64.1(1.3),(0)5[1.3]¢ 63.0(1.1),(0.5)5[1.2]¢
n 16.3(0.8).(0)[0.8] 16.2(0.8),(0.6)5[1.0]¢
7 14.7(0.7).(0)5[0.7]¢ 14.3(0.5).(0.5)5[0.7],
Total 95.1[1.7], 93.5[1.7],
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Application to HLbL and results

__ Pseudoscalar-pole contribution: Final results

0 2 2
—G (Ql Q3 )—
allPLiP 101 OPE (ap3,1 = 2b3)

0 65.3(1.4)F(2.4)5, [2.8]:

—G (@7, Q3)—

HLbL:P 11 min max
ay; x 10 ap11 P11

64.1(13)0(0)slL 31 2eys  63.0(11)c(0.5)s[1.2]{23}ys
n

n
Total
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__ Pseudoscalar-pole contribution: Final results
— (@7, @3)—

allPLiP 101 OPE (aps,1 = 2b3)

0 65.3(1.4)F(2.4)5_ [2.8];
17.1(0.6)£(0.2)5, [0.6]¢
16.0(0.5)r(0.3)s,,[0.6];

™
n

o
Total 98.4[2.9],
1 2 2
_Cz (Ql ’ Qz )_
aLlLbL,P x 1011 a;;ulul a;;nixl
70 64.1(1.3)(0)5[1.3]¢{1.2}sys  63.0(1.1),(0.5)5[1.2]¢{2.3}5ys
n 16.3(0.8).(0)5[0.8]¢{0.8}sys  16.2(0.8).(0.6)5[1.0]¢{0.9}sys
7 14.7(0.7)1(0)5[0.7]:{1.3}sys  14.3(0.5)1(0.5)5[0.7]¢{1.7 }sys
93.5[1.7]¢{4.9}5ys

Total 95.1[1.7]¢{3.3}sys
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__ Pseudoscalar-pole contribution: Final results
— (@7, @3)—

allPLiP 101 OPE (aps,1 = 2b3)

0 65.3(1.4)F(2.4)5_ [2.8];
17.1(0.6)£(0.2)5, [0.6]¢
16.0(0.5)r(0.3)s,,[0.6];

™
n

o
Total 98.4[2.9],
1 2 2
_Cz (Ql ’ Qz )_
aLlLbL,P x 1011 a;;ulul a;;nixl
70 64.1(1.3)(0)5[1.3]¢{1.2}sys  63.0(1.1),(0.5)5[1.2]¢{2.3}5ys
n 16.3(0.8).(0)5[0.8]¢{0.8}sys  16.2(0.8).(0.6)5[1.0]¢{0.9}sys
7 14.7(0.7)1(0)5[0.7]:{1.3}sys  14.3(0.5)1(0.5)5[0.7]¢{1.7 }sys
Total 95.1[1.7]¢{3.3}sys 93.5[1.7]¢{4.9}5ys

—Final Result (combining errors just for clarity)

am ™" = (63.6(2.7) + 16.3(1.3) + 14.5(1.8)) x 10! = 04.3(5.3) x 10~
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__ Pseudoscalar-pole contribution: Final results

0 2 2
_Cl (Ql ’ Qz )_
allPLiP 101 OPE (ap3,1 = 2b3)
70 65.3(1.4)F(2.4), [2.8]¢
7 17.1(0.6)(0.2), [0.6]
' 16.0(0.5)F(0.3)5,, [0.6]¢
Total 98.4[2.9];
1 2 2
_Cz (Ql ’ Qz )_
aLlLbL,P x 1011 a;;ulul a;;nixl
70 64.1(1.3)(0)5[1.3]¢{1.2}sys  63.0(1.1),(0.5)5[1.2]¢{2.3}5ys
n 16.3(0.8).(0)5[0.8]¢{0.8}sys  16.2(0.8).(0.6)5[1.0]¢{0.9}sys
7 14.7(0.7)1(0)5[0.7]:{1.3}sys  14.3(0.5)1(0.5)5[0.7]¢{1.7 }sys
Total 95.1[1.7]¢{3.3}sys 93.5[1.7]¢{4.9}sys

—Final Result (combining errors just for clarity)

am ™" = (63.6(2.7) + 16.3(1.3) + 14.5(1.8)) x 10! = 04.3(5.3) x 10~

e Low-energy emphasis but high-energies too
e 1 and 7’ fulfill high-energies (5 x 107! effect: 1/3 of exp error)

e Systematic from sequence results
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— Summary

® Padé approximants to reconstruct form factors

Full use of data and theory in a systematic approach; not modelling
® New value aZ’LbL;”’"'"/ = 94.3(5.3) x 107! including systematics
® OPE for all the pseudoscalars implemented

e Bypass  — 1’ mixing (output): non-trivial if fully theory-driven approach

__ Related projects

e Radiative corrections for P — 2¢'¢’: Phys.Rev. D97 (2018) 056010

® In contact with H. Czyz for eTe™ — ete™ P
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Section 4

Backup
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— Fpyer (QF, Q)

2 2.
QZZ [GeVZ] . Q [GeV ]30

Q [GeV?] L
The two planes: boundaries for the ap.; 1 region
Q; [GeV”]

3

Q?F [GeV?T®

40

2 2
s Q5 [GeV ]30

40

20 I
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2 N2
— FP’Y*’Y*(Qlﬂ Qz)
Q? [GeV?] ,

Q?F [GeV?T®

Qf [GeV?] * 40/,
The two planes: boundaries for the ap.; 1 region
Q1GeV] Q5 [GeV?] 4
2 i I 0 2 T

Q? [GeVH)® Q? [GeV?T®
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Seeing is believing: toy models and systematics
—aj,: Regge Model—

—ay,: Logarithmic Model—

2 /02
(0) M2+Q2>7 " )<M2+Qz) log FPMM (1+Q1/M )
Fchg,o (Q Q)* anm [1‘"0( al v 22 Fw'\,w (leQQ) QZI 1+Q22/M2
152 - w0 ()

o a g ¢
LE 55.2 59.7 60.4 60.6 LE 56.7 644 66.1 66.8
OPE 657 60.8 60.7 60.7 OPE 657 67.3 675 676
Exact 60.7

Exact 67.6

P. Masjuan & P. Sanchez Phys.Rev. D95, 054026 (2017)
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Seeing is believing: toy models and systematics

—aj,: Regge Model—

Fross (@R, @3) =

2 2 2 2
[@em (m),wm)(m)]
a;:‘,"_Y a a

- »@ (MTZ)
Q g c ¢
LE 55.2 59.7 60.4 60.6
OPE 657 60.8 60.7 60.7
Exact 60.7

The convergence result is excellent!

P. Masjuan & P. Sanchez Phys.Rev. D95, 054026 (2017)

—ay,: Logarithmic Model—

1+Q3/M?

log Fpoy M2 1+Q2/M?
Fw’y'\, (leQz) sz I (+
o a g ¢
LE 56.7 644 66.1 66.8
OPE 657 67.3 675 676
Exact 67.6

Still, low energies provide a good performance

The OPE choice seems the best — high energy matters

Error ~ difference among elements — Systematics!
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