Isospin Breaking in τ input for (g-2)from Lattice QCD

Mattia Bruno

in collaboration with T. Izubuchi, C. Lehner and A. Meyer

for the RBC/UKQCD Collaboration

Second Plenary Workshop of the Muon g-2 Theory Initiative June $21^{\rm st},\,2018$

MOTIVATIONS

V - A current

- Final states I = 1 charged
- au data can improve $a_{\mu}[\pi\pi]$ $\rightarrow E \in [2m_{\pi}, m_{\tau}]$ $\rightarrow 72\%$ of total Hadronic LO **BROOKHAVEN** NATIONAL LABORATORY

ISOSPIN CORRECTIONS

Restriction to $e^+e^- \to \pi^+\pi^-$ and $\tau^- \to \pi^-\pi^0\,\nu_\tau$

$$v_0(s) = \frac{s}{4\pi\alpha^2}\sigma_{\pi^+\pi^-}(s)$$

$$v_{-}(s) = \frac{m_{\tau}^{2}}{6|V_{ud}|^{2}} \frac{\mathcal{B}_{\pi\pi^{0}}}{\mathcal{B}_{e}} \frac{1}{N_{\pi\pi^{0}}} \frac{dN_{\pi\pi^{0}}}{ds} \left(1 - \frac{s}{m_{\tau}^{2}}\right)^{-1} \left(1 + \frac{2s}{m_{\tau}^{2}}\right)^{-1} \frac{1}{S_{\rm EW}}$$
Isospin correction $v_{0} = R_{\rm IB}v_{-}$

$$R_{\rm IB} = \frac{\text{FSR}}{G_{\rm EM}} \frac{\beta_{0}^{3}|F_{\pi}^{0}|^{2}}{\beta_{-}^{3}|F_{\pi}^{-}|^{2}}$$
[Alemani et al. '98]

- **0.** $S_{\rm EW}$ electro-weak radiative correct. [Marciano, Sirlin '88][Braaten, Li '90]
- **1.** Final State Radiation of $\pi^+\pi^-$ system [Schwinger '89][Drees, Hikasa '90]
- 2. $G_{\rm EM}$ (long distance) radiative corrections in τ decays Chiral Resonance Theory [Cirigliano et al. '01, '02] Meson Dominance [Flores-Talpa et al. '06, '07]

3. Phase Space $(\beta_{0,-})$ due to $(m_{\pi^{\pm}} - m_{\pi^0})$

NATIONAL LABORATORY

PION FORM FACTORS

$$m_{
ho^0} \neq m_{
ho^{\pm}}$$
, $\Gamma_{
ho^0} \neq \Gamma_{
ho^{\pm}}$, $m_{\pi^0} \neq m_{\pi^{\pm}}$
 $ho - \omega$ mixing $\delta_{
ho\omega} \simeq O(m_{\rm u} - m_{\rm d}) + O(e^2)$

BROOKHAVEN NATIONAL LABORATORY

Contribution to a_{μ}

4/8

$$\begin{array}{ll} \text{Time-momentum representation} & & [\text{Bernecker, Meyer, '11}] \\ G^{\gamma}(t) = \frac{1}{3} \sum_{k} \int d\vec{x} \ \langle j_{k}^{\gamma}(x) j_{k}^{\gamma}(0) \rangle & \rightarrow & a_{\mu} = 4\alpha^{2} \sum_{t} w_{t} G^{\gamma}(t) \end{array}$$

Isospin decomposition of u, d current

NEUTRAL VS CHARGED

$$\begin{split} &\frac{i}{2} \left(\bar{u} \gamma_{\mu} u - \bar{d} \gamma_{\mu} d \right), \begin{bmatrix} I = 1\\ I_3 = 0 \end{bmatrix} \rightarrow j^{(1,-)}_{\mu} = \frac{i}{\sqrt{2}} \left(\bar{u} \gamma_{\mu} d \right), \begin{bmatrix} I = 1\\ I_3 = -1 \end{bmatrix} \\ &\text{Isospin 1 charged correlator } G^W_{11} = \frac{1}{3} \sum_k \int d\vec{x} \ \langle j^{(1,+)}_k(x) j^{(1,-)}_k(0) \rangle \end{split}$$

$$\begin{split} \delta G^{(1,1)} &\equiv G_{11}^{\gamma} - G_{11}^{W} \\ &= Z_{V}^{4} (4\pi\alpha) \frac{(Q_{u} - Q_{d})^{4}}{4} \Big[\underbrace{ \swarrow_{V_{U}}}_{V_{U}} + \underbrace{ \swarrow_{V}}_{V} \Big] \\ G_{01}^{\gamma} &= Z_{V}^{4} \frac{(Q_{u}^{2} - Q_{d}^{2})^{2}}{2} (4\pi\alpha) \Big[\underbrace{ \swarrow_{V_{U}}}_{V_{U}} + 2 \times \underbrace{ \swarrow_{V}}_{V} \Big] \\ &+ Z_{V}^{2} \frac{Q_{u}^{2} - Q_{d}^{2}}{2} (m_{u} - m_{d}) \Big[2 \times \underbrace{ \circlearrowright}_{V} + \dots \Big] \\ &\dots = \text{subleading diagrams currently not included} \end{split}$$

$\Delta a_{\mu}[\pi\pi,\tau]$

・ロト ・四ト ・ヨト ・ヨト

Restriction to $2\pi \rightarrow$ neglect pure I = 0 part $a^{(0,0)}_{\mu}[\pi^0\gamma, 3\pi, \dots]$

Lattice:
$$\Delta a_{\mu}[\pi\pi, \tau] = 4\alpha^2 \sum_{t} w_t \times [G_{01}^{\gamma}(t) + G_{11}^{\gamma}(t) - G_{11}^{W}(t)]$$

Pheno: $\Delta a_{\mu}[\pi\pi, \tau] = \int_{4m_{\pi}^2}^{m_{\pi}^2} ds K(s) [v_0(s) - v_-(s)]$

Conversion to Euclidean time for direct comparison

$$\Delta a_{\mu}[\pi\pi,\tau] = 4\alpha^2 \sum_t w_t \times \left\{ \frac{1}{12\pi^2} \int d\omega \ \omega e^{-\omega t} \left[R_{\rm IB}(\omega^2) - 1 \right] v_{-}(\omega^2) \right\}$$

FSR, $G_{\rm EM} \rightarrow$ (presently) not computed from lattice required for direct comparison v_{-} vs G_{11}^W BROO

LATTICE: PRELIMINARY RESULTS

 Δa_{μ} from G_{01}^{γ} (QED and SIB):

Pure I = 1 only $O(\alpha)$ terms:

CONCLUSIONS

For detailed comparison lattice vs pheno:

study systematic errors \rightarrow ongoing finite volume study

improvement of errs \rightarrow high stat. data set from HLbL

Discussion points and prospects:

- **1.** full lattice calculation of $\Delta a_{\mu}[\tau]$
- 2. lattice QCD calculation \rightarrow various comparisons

```
comparison v_- with experiment requires FSR, S_{\rm EW} and G_{\rm EM}

\rightarrow test of long distance QED corrections
```

study G_{01}^{γ} alone $\rightarrow \rho - \omega$ mixing ?

study $\delta G^{(1,1)}$ alone $\rightarrow \rho^0$ vs ρ^- properties ?

Thanks for your attention

Full QED and SIB

Presently only leading diagrams are computed V, F, S, M [Blum et al. '18] \rightarrow improving precision between 2 and 4 times SU(3) and $1/N_c$ diagrams presently not computed

э

イロト イボト イヨト イヨト

PEEKING AT THE DATA - I

イロト 不得 トイラト イラト 一日

Lattice fully inclusive \rightarrow comparison with v_{-} problematic

manipulate correlator to implement energy cut

fit lowest energy state $(c_0 + c_1 t)e^{-Et}$

PEEKING AT THE DATA - II

 $\Delta a_{\mu} = 4 \alpha^2 \sum_t w_t \; \delta G(t) \rightarrow {\rm weights \; suppress \; short \; distance}$

lattice correlator more precise at short distances

fit $(c_0 + c_1 t)e^{-Et}$ $E \to \pi\pi \text{ or } \pi\gamma$

reduction of stat. noise

temporary solution: not required with better precision

BROOKHAVEN

LATTICE IMPROVEMENTS

Stat. improvements from data of HLbL project \$[Phys.Rev.Lett.~118~(2017)]\$ contribution of diagram <math display="inline">F to pure I=1 part of Δa_{μ}

EXAMPLE OF COMPARISON

Lattice complete contribution $\Delta a_{\mu} \propto (G_{01}^{\gamma} + \delta G^{(1,1)})$

For
$$[R_{\rm IB}-1]v_-$$
 we use:

1. $\mathrm{FSR}\beta_0^3 |F_\pi^0|^2 - \beta_-^3 |F_\pi^-|^2$

2. we use GS model for $F_\pi^{0,-}$ inspired from [Davier at al. '10]

SEPARATE STUDIES

Potential to study $\rho^{\pm,0}$ properties and $\rho - \omega$ mixing: discussion points

$$\delta G^{(1,1)} = G_{11}^{\gamma} - G_{11}^{W} \leftrightarrow \sqrt{\gamma} \qquad \rho^{\rho} \qquad \pi^{-} \qquad \sqrt{W^{-}} \qquad \rho^{-} \qquad \pi^{-} \qquad \pi^$$