HVP Lattice Status Report BMW At Physical Point Mass with Full Systematics

Kohtaroh Miura (CPT, Aix-Marseille Univ.)

Muon g – 2, June 21, 2018

Budapest-Marseille-Wuppertal Collaboration Refs: PRL-accepted (1711.04980), Phys.Rev. D96 (2017) no.7, 074507

 $a_{\mu}^{exp.}$ vs. $a_{\mu}^{ extsf{SM}}$

SM contribution	$a_\mu^{ m contrib.} imes 10^{10}$	Ref.
QED [5 loops]	11658471.8951 ± 0.0080	[Aoyama et al '12]
HVP-LO (pheno.)	692.6 ± 3.3	[Davier et al '16]
	694.9 ± 4.3	[Hagiwara et al '11]
	681.5 ± 4.2	[Benayoun et al '16]
HVP-NLO	-9.84 ± 0.07	[Hagiwara et al '11]
		[Kurz et al '11]
HVP-NNLO	1.24 ± 0.01	[Kurz et al '11]
HLbyL	10.5 ± 2.6	[Prades et al '09]
Weak (2 loops)	15.36 ± 0.10	[Gnendiger et al '13]
SM tot [0.42 ppm]	11659180.2 ± 4.9	[Davier et al '11]
[0.43 ppm]	11659182.8 ± 5.0	[Hagiwara et al '11]
[0.51 ppm]	11659184.0 ± 5.9	[Aoyama et al '12]
Exp [0.54 ppm]	11659208.9 ± 6.3	[Bennett et al '06]
Exp – SM	28.7 ± 8.0	[Davier et al '11]
	26.1 ± 7.8	[Hagiwara et al '11]
	24.9 ± 8.7	[Aoyama et al '12]

$a_{\mu}^{\rm LO-HVP}|_{\it NoNewPhys}\simeq 720\pm7, \label{eq:solution}$ FNAL E989 (2017): 0.14-ppm, J-PARC E34: 0.1-ppm

・ロト ・聞 ト ・ ヨト ・ ヨト …

1

Really $a_{\mu}^{exp.} \neq a_{\mu}^{SM}$?

• $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ and $a_{\mu}^{\text{LO}-\pi\pi}$ is under discussion (talks yesterday). It is challenging to control systematics in the integral of R-ratio:

$$\hat{\Pi}(Q^{2}) = \int_{0}^{\infty} ds \frac{Q^{2}}{s(s+Q^{2})} \frac{\mathrm{Im}\Pi(s)}{\pi} = \frac{Q^{2}}{12\pi^{2}} \int_{0}^{\infty} ds \frac{R_{had}(s)}{s(s+Q^{2})} ,$$

$$R_{had}(s) \equiv \frac{\sigma(e^{+}e^{-} \to had.)}{4\pi\alpha^{2}(s)/(3s)} .$$
(1)

・ 「「「」 ・ 「」 ・ ・ 「」 ・ ・

 Independent cross-checks by Lattice QCD is demanded. Permil-Level determination of Leading-Order (LO) Hadronic Vauccum Polarization (HVP) contribution to muon g-2 (a^{LO-HVP}_µ) is required in terms of the on-going /forth-coming experiments.

Really $a_{\mu}^{exp.} \neq a_{\mu}^{SM}$?

• $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ and $a_{\mu}^{LO-\pi\pi}$ is under discussion (talks yesterday). It is challenging to control systematics in the integral of R-ratio:

$$\hat{\Pi}(Q^2) = \int_0^\infty ds \frac{Q^2}{s(s+Q^2)} \frac{\mathrm{Im}\Pi(s)}{\pi} = \frac{Q^2}{12\pi^2} \int_0^\infty ds \frac{R_{had}(s)}{s(s+Q^2)} ,$$

$$R_{had}(s) \equiv \frac{\sigma(e^+e^- \to had.)}{4\pi\alpha^2(s)/(3s)} .$$
(1)

(本部) (本語) (本語) (

 Independent cross-checks by Lattice QCD is demanded. Permil-Level determination of Leading-Order (LO) Hadronic Vauccum Polarization (HVP) contribution to muon g-2 (a^{LO-HVP}_μ) is required in terms of the on-going /forth-coming experiments.

Really $a_{\mu}^{exp.} \neq a_{\mu}^{SM}$?

• $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ and $a_{\mu}^{LO-\pi\pi}$ is under discussion (talks yesterday). It is challenging to control systematics in the integral of R-ratio:

$$\hat{\Pi}(Q^{2}) = \int_{0}^{\infty} ds \frac{Q^{2}}{s(s+Q^{2})} \frac{\text{Im}\Pi(s)}{\pi} = \frac{Q^{2}}{12\pi^{2}} \int_{0}^{\infty} ds \frac{R_{had}(s)}{s(s+Q^{2})} ,$$

$$R_{had}(s) \equiv \frac{\sigma(e^{+}e^{-} \to had.)}{4\pi\alpha^{2}(s)/(3s)} .$$
(1)

 Independent cross-checks by Lattice QCD is demanded. Permil-Level determination of Leading-Order (LO) Hadronic Vauccum Polarization (HVP) contribution to muon g-2 (a^{LO-HVP}_μ) is required in terms of the on-going /forth-coming experiments.

Objective in This Work

LO-HVP contribution to muon g-2 for all leptons by lattice QCD:

$$a_{\ell=e,\mu, au}^{ ext{LO-HVP},f} = \left(rac{lpha}{\pi}
ight)^2 \int_0^\infty dQ^2 \; \omega(Q^2/m_\ell^2) \hat{\Pi}^f(Q^2) \; .$$

where suffix f stands for a flavor f = l(u, d), s, c, disc, and

$$\hat{\Pi}^{f}(Q^{2}) = \Pi^{f}(Q^{2}) - \Pi^{f}(0) = \sum_{t} t^{2} \left[1 - \left(\frac{\sin(z/2)}{z/2}\right)^{2} \right]_{z=Qt} \frac{1}{3} \sum_{i=1}^{3} C_{ii}^{f}(t) , \quad (2)$$

with

$$C_{\mu\nu}^{f=l,s,c}(t) = q_{f=l,s,c}^2 \sum_{\vec{x}} \langle j_{\mu}^f(x) j_{\nu}^f(0) \rangle|_{conn} ,$$

$$C_{\mu\nu}^{f=disc}(t) = q_{f=disc}^2 \sum_{\vec{x}} \langle (\bar{l}\gamma_{\mu}l - \bar{s}\gamma_{\mu}s) (\bar{l}\gamma_{\nu}l - \bar{s}\gamma_{\nu}s) \rangle|_{disc} .$$

Here, charge factors are given by $(q_l^2, q_s^2, q_c^2, q_{disc}^2) = (5/9, -1/9, 4/9, 1/9).$

Correlator and HVP: Example

Left:
$$C^{ud}(t) = \frac{5}{9} \sum_{\vec{x}} \frac{1}{3} \sum_{i=1}^{3} \langle j_i^{ud}(\vec{x}, t) j_i^{ud}(0) \rangle$$
, (3)

$$Right: \hat{\Pi}^{ud}(Q^2) = \sum_{t} t^2 \left[1 - \left(\frac{\sin(z/2)}{z/2}\right)^2 \right]_{z=Qt} C^{ud}(t) .$$
 (4)

Bounding I

Figure: $C^{ud}(t) = \frac{5}{9} \sum_{\vec{x}} \frac{1}{3} \sum_{i=1}^{3} \langle j_i^{ud}(\vec{x}, t) j_i^{ud}(0) \rangle$

- The connected-light correlator $C^{ud}(t)$ loses signal for t > 3fm. To control statistical error, consider $C^{ud}(t > t_c) \rightarrow C^{ud}_{up/low}(t, t_c)$, where $C^{ud}_{up}(t, t_c) = C^{ud}(t_c) \varphi(t)/\varphi(t_c)$, $C^{ud}_{low}(t, t_c) = 0.0$, with $\varphi(t) = \cosh[E_{2\pi}(T/2 - t)]$, and $E_{2\pi} = 2(M_{\pi}^2 + (2\pi/L)^2)^{1/2}$.
- Similarly, $C^{disc}(t) \rightarrow C^{disc}_{up/low}(t, t_c)$, $-C^{disc}_{up}(t > t_c) = 0.1C^{ud}(t_c) \varphi(t)/\varphi(t_c)$, $-C^{disc}_{low}(t > t_c) = 0.0$.

•
$$C_{low}^{ud,disc}(t, t_c) \leq C^{ud,disc}(t) \leq C_{up}^{ud,disc}(t, t_c).$$

★ Ξ ► < Ξ ►</p>

Bounding II

- Corresponding to $C_{up/low}^{ud,disc}(t_c)$, we obtain upper/lower bounds for g 2: $a_{\ell,up/low}^{ud,disc}(t_c)$.
- Two bounds meet around $t_c = 3fm$. Consider the average of bounds: $\bar{a}_{\ell}^{ud,disc}(t_c) = 0.5(a_{\ell,up}^{ud,disc} + a_{\ell,low}^{ud,disc})(t_c)$, which is stable around $t_c = 3fm$.
- We pick up such averages $\bar{a}_{\ell}^{ud,disc}(t_c)$ with 4-6 kinds of t_c around 3fm. The average of average is adopted as $a_{\ell,ud/disc}^{\rm LO-HVP}$ to be analysed, and a fluctuation over selected t_c is incorporated into the systematic error.

Introduction

Result Summary and Perspective

Simulation Setup

State of The Art

- Nf=(2+1+1) simulations around Physical Mass Points.
- Large Volume: (*L*, *T*) ∼ (6, 9 − 12)*fm*.
- Controlled Continuum Limit with 15 simulation points.

э

β	a[fm]	Nt	Ns	#traj.	$M_{\pi}[{ m MeV}]$	M_K [MeV]	#SRC (I,s,c,d)
3.7000	0.134	64	48	10000	~ 131	\sim 479	(768, 64, 64, 9000)
3.7500	0.118	96	56	15000	~ 132	\sim 483	(768, 64, 64, 6000)
3.7753	0.111	84	56	15000	~ 133	\sim 483	(768, 64, 64, 6144)
3.8400	0.095	96	64	25000	~ 133	\sim 488	(768, 64, 64, 3600)
3.9200	0.078	128	80	35000	~ 133	\sim 488	(768, 64, 64, 6144)
4.0126	0.064	144	96	04500	~ 133	\sim 490	(768, 64, 64, -)

Table of Contents

2 Result

- Continuum Extrapolation
- Corrections to Pure Lattice QCD
- Discussion: Lattice vs Pheno

ヨト イヨト

3

Continuum Extrapolation Corrections to Pure Lattice QCD Discussion: Lattice vs Pheno

★ Ξ ► < Ξ ►</p>

Table of Contents

2 Result

- Continuum Extrapolation
- Corrections to Pure Lattice QCD
- Discussion: Lattice vs Pheno

Introduction Continuum E Result Corrections t Summary and Perspective Discussion: L

Continuum Extrapolation Corrections to Pure Lattice QCD Discussion: Lattice vs Pheno

< 🗇 🕨

< E >

Continuum Extrap. of Light Conn. Component: $a_{\mu,ud}^{\text{LO-HVP}}$

 $F(a_{\mu,ud}^{\text{LO-HVP}}, A, C_{\pi}, \cdots) = a_{\mu,ud}^{\text{LO-HVP}}(1 + Aa^2) + C_{\pi} \Delta M_{\pi}^2 + \cdots .$ $a_{\mu,ud}^{\text{LO-HVP}} = 632.1(7.9)(8.3) , \quad \chi^2/\text{dof} = 7.8/12 \text{ (fit1 case)}.$

Introduction Result Summary and Perspective Corrections to Pure Lattic Discussion: Lattice vs Ph

Crosscheck of Continuum Extrapolation

c.f. HPQCD PRD2017

-

< 🗇 🕨

Continuum Extrapolation Corrections to Pure Lattice QCD Discussion: Lattice vs Pheno

Continuum Extrap. of Strange Conn. Component: $a_{u,s}^{\text{LO-HVP}}$

$$F(a_{\mu,s}^{\text{LO-HVP}}, A, C_{K}) = a_{\mu,s}^{\text{LO-HVP}}(1 + Aa^{2}) + C_{K}\Delta M_{K}^{2} .$$
 (5)

< 🗇 🕨

∃ >

 $_{\mu,s}^{\text{LO-HVP}} = 53.64(04)(14) \ , \ \ \chi^2/\text{dof} = 16.7/11 \ (\text{fit1 case}).$ c.f. Mainz Group: $M_\pi^2 \log M_\pi^2$ collection.

Continuum Extrapolation Corrections to Pure Lattice QCD Discussion: Lattice vs Pheno

Continuum Extrap. of Strange Conn. Component: $a_{u,s}^{\text{LO-HVP}}$

$$F(a_{\mu,s}^{\text{LO-HVP}}, A, C_{K}) = a_{\mu,s}^{\text{LO-HVP}}(1 + Aa^{2}) + C_{K}\Delta M_{K}^{2} .$$
 (5)

-

 $\begin{array}{l} a_{\mu,s}^{\text{LO-HVP}} = 53.64(04)(14) \ , \quad \chi^2/\text{dof} = 16.7/11 \ (\text{fit1 case}). \\ \text{c.f. Mainz Group:} \ \ M_\pi^2 \log M_\pi^2 \ \text{collection}. \end{array}$

Introduction Result Summary and Perspective Corrections to Pure Lattice G Discussion: Lattice vs Pheno

Continuum Extrap. of Charm Conn. Component: $a_{\mu,c}^{\text{LO-HVP}}$

 $F(a_{\mu,c}^{\text{LO-HVP}}, A, C_{\pi,\eta_c}) = a_{\mu,c}^{\text{LO-HVP}}(1 + Aa^2) + C_{\pi} \Delta M_{\pi}^2 + C_{\eta_c} \Delta M_{\eta_c} .$

 $a_{\mu,c}^{\text{LO-HVP}} = 14.68(03)(06)$, $\chi^2/\text{dof} = 1.4/7$ (fit2 case). The fit model works in M_{Ds} determination.

< 🗇 🕨

- A 🖻 🕨

Introduction Result Summary and Perspective Corrections to Pure Lattice G Discussion: Lattice vs Pheno

Continuum Extrap. of Charm Conn. Component: $a_{\mu,c}^{\text{LO-HVP}}$

$$\begin{split} F(a_{\mu,c}^{\text{LO-HVP}}, \pmb{A}, \pmb{C}_{\pi,\eta_c}) &= a_{\mu,c}^{\text{LO-HVP}} (1 + Aa^2) + C_{\pi} \Delta M_{\pi}^2 + C_{\eta_c} \Delta M_{\eta_c} \ . \\ a_{\mu,c}^{\text{LO-HVP}} &= 14.68(03)(06) \ , \quad \chi^2/\text{dof} = 1.4/7 \ (\text{fit2 case}). \\ \text{The fit model works in } M_{Ds} \ \text{determination}. \end{split}$$

< 🗇 🕨

- A 🚍 🕨

Introduction Continuum Ext Result Corrections to Summary and Perspective Discussion: Lat

Continuum Extrapolation Corrections to Pure Lattice QCD Discussion: Lattice vs Pheno

< 🗇 🕨

- A 🚍 🕨

Continuum Extrap. of Disc. Component: $a_{\mu,disc}^{\text{LO-HVP}}$

$$\begin{split} F(a_{\mu,disc}^{\text{LO-HVP}}, A, C_{\pi}, \cdots) &= a_{\mu,disc}^{\text{LO-HVP}} (1 + Aa^2) + C_{\pi} \Delta M_{\pi}^2 + \cdots \\ a_{\mu,disc}^{\text{LO-HVP}} &= -11.0(1.1)(0.6) , \quad \chi^2/\text{dof} = 2.4/10 \text{ (fit1 case)}. \end{split}$$

Continuum Extrapolation Corrections to Pure Lattice QCD Discussion: Lattice vs Pheno

Various Corrections

- High Q^2 Control: The lattice data have enough overlap to perturbative regime even in tau case. $\mathbf{a}_{\ell,f}^{\text{LO-HVP}} = \mathbf{a}_{\ell,f}^{\text{LO-HVP}}(Q \leq Q_{max}) + (\gamma_{\ell}\hat{\Pi}^f)(Q_{max}) + \Delta^{pert}\mathbf{a}_{\ell,f}^{\text{LO-HVP}}(Q > Q_{max})$.
- Isospin/QED Collections: Model estimates amounts to 1.1% corrections (table thanks to F.Jegerlehner (& M. Benayoun)).
- <u>FV Collections:</u> The dominant FV in I = 1, $\pi^+\pi^-$ loop channel is estimated by XPT (Aubin et al '16): $(a_{\mu,I=1}^{\text{LO-HVP}}(\infty) - a_{\mu,I=1}^{\text{LO-HVP}}(6fm))|_{\text{XPT}} = 13.42(13.42) \times 10^{-10}$, (1.9%).

Effect	$\delta a_{\mu}^{ ext{LO-HVP}} imes 10^{10}$
$\rho - \omega$ mix.	2.71 ± 1.36
FSR	4.22 ± 2.11
$M_\pi ightarrow M_{\pi\pm}$	-4.47 ± 4.47
$\pi^0\gamma$	4.64 ± 0.04
$\eta\gamma$	0.65 ± 0.01
Total	7.8 ± 5.1

Continuum Extrapolation Corrections to Pure Lattice QCD Discussion: Lattice vs Pheno

Summary on $a_{\mu}^{\text{LO-HVP}}$ PRL2018

$a_{\mu}^{\text{LO-HVP}}$ BMWc

I = 1	$582.9(6.7)_{st}(7.2)_{acut}(0.1)_{tcut}(0.0)_{qcut}(4.5)_{da}(13.5)_{fv}$
<i>l</i> = 0	$120.5(3.4)_{st}(3.5)_{acut}(0.2)_{tcut}(0.0)_{qcut}(1.0)_{da}$
total	$711.1(7.5)_{st}(8.0)_{acut}(0.2)_{tcut}(0.0)_{qcut}(5.5)_{da}(13.5)_{fv}(5.1)_{iso}$

- Our Lattice QCD results are consistent with both "No New Physics" and Dispersive Method.
- Total error of our LQCD is 2.6%, dominated FV effects.

イロト イポト イヨト イヨト

э

Continuum Extrapolation Corrections to Pure Lattice QCD Discussion: Lattice vs Pheno

 $\hat{\Pi}^{lat}(Q^2)$ vs $\hat{\Pi}^{pheno}(Q^2)$ for Various Q^2 Preliminary

$$\begin{split} \hat{\Pi}^{lat}(Q^2) &= \lim_{a \to 0} \sum_{t=0}^{T/2} \left[t^2 - \left(\frac{sinQt/2}{Qt/2} \right)^2 \right] \frac{C^f_{ii}(t)}{3} , \\ \hat{\Pi}^{pheno}(Q^2) &= \frac{Q^2}{12\pi^2} \int_0^\infty ds \frac{R_{had}(s)}{s(s+Q^2)} . \end{split}$$

Lat (BMWc) vs Pheno (alphaQEDc17 by Jegerlehner) for $\omega(Q^2/m_{\mu}^2)\hat{\Pi}(Q^2)$

- The contributions at $Q^2 \sim (m_{\mu}/2)^2$ are dominant, and the lattice and phemenology are consistent within the error-bars there.
- However, the lattice error gets larger at Q² ~ (m_μ/2)². More precise estimates are demanded and in progress.

Introduction Result

Summary and Perspective

Continuum Extrapolation Corrections to Pure Lattice QCD Discussion: Lattice vs Pheno

Integrand of $a_{\mu,ud}^{ t LO-HVP}$

$$a_{\mu,ud}^{\text{LO-HVP}} = \sum_{\mu} W(t, m_{\mu}) C_{tot}(t) , \qquad (6)$$

$$c.f. \ C_{tot}^{pheno}(t) = \int_0^\infty ds \sqrt{s} R_{had}(s) e^{-\sqrt{s}|t|} \ . \tag{7}$$

< 17 >

э

Continuum Extrapolation Corrections to Pure Lattice QCD Discussion: Lattice vs Pheno

Continuum Extrapolation Corrections to Pure Lattice QCD Discussion: Lattice vs Pheno

Continuum Extrapolation Corrections to Pure Lattice QCD Discussion: Lattice vs Pheno

Window Method

UV:
$$S_{UV}(t) = 1.0 - (1.0 + \tanh[(t - t_0)/\Delta])/2$$
, (8)

$$\mathsf{IM:} \ S_{\mathit{IM}}(t) = \frac{1}{2} \Big(\mathsf{tanh}\big[(t-t_0)/\Delta\big] - \mathsf{tanh}\big[(t-t_1)/\Delta\big] \Big) \ , \qquad (9)$$

IR:
$$S_{IR}(t) = (1.0 + \tanh[(t - t_1)/\Delta])/2$$
, (10)

We shall adopt $t_0=0.6 fm$, $t_1=1.5 fm$, $\Delta=0.3 fm$. (11)

< 17 ▶

< ∃→

э

c.f. RBC-UKQCD, arXiv: 1801.07224

Introduction Continuum Extrapolation Result Corrections to Pure Lattice QCD Summary and Perspective Discussion: Lattice vs Pheno

Continuum Extrapolation in Dominant Window Preliminary

For the most important window (0.6 - 1.5 fm), the lattice QCD provides very precise data with per-mil level precision.

Continuum Extrapolation Corrections to Pure Lattice QCD Discussion: Lattice vs Pheno

||▲ 同 ト || 三 ト || 三 ト

Summary on $a_{e,\tau}^{\text{LO-HVP}}$ PRL(2018)

$a_e^{\text{LO-HVP}}$ BMWc

I = 1	$156.9(2.4)_{st}(2.1)_{acut}(0.0)_{tcut}(0.0)_{qcut}(1.2)_{da}(4.6)_{fv}$
<i>I</i> = 0	$30.7(1.2)_{st}(1.0)_{acut}(0.1)_{tcut}(0.0)_{qcut}(0.2)_{da}$
total	$189.3(2.6)_{st}(2.3)_{acut}(0.1)_{tcut}(0.0)_{qcut}(1.5)_{da}(4.6)_{fv}(1.6)_{iso}$

$a_{\tau}^{\text{LO-HVP}}$ BMWc

l = 1	$253.2(0.7)_{st}(1.4)_{acut}(0.0)_{tcut}(0.1)_{qcut}(1.2)_{da}(1.8)_{fv}$
<i>l</i> = 0	$84.4(0.4)_{st}(0.7)_{acut}(0.0)_{tcut}(1.1)_{qcut}(3.4)_{da}$
total	$341.0(0.8)_{st}(1.6)_{acut}(0.0)_{tcut}(1.1)_{qcut}(1.5)_{da}(1.8)_{fv}(1.1)_{iso}$

Burger et.al.('15): $a_e^{\text{LO-HVP}} = 178.2(6.4)(8.6), a_{\tau}^{\text{LO-HVP}} = 341(8)(6)$ HPQCD ('16): $a_e^{\text{LO-HVP}} = 177.9(3.9)$ Jeherlehner('16): $a_e^{\text{LO-HVP}} = 185.11(1.24)$. Eidelman et.al.('07): $a_{\tau}^{\text{LO-HVP}} = 338(4)$.

Table of Contents

Introduction

2 Result

- Continuum Extrapolation
- Corrections to Pure Lattice QCD
- Discussion: Lattice vs Pheno

3 Summary and Perspective

< 注入 < 注入 -

э

< 🗇 🕨

Summary and Perspective

- We have obtained $a_{\mu}^{\text{LO-HVP}}$ directly at physical point masses: $a_{\mu}^{\text{LO-HVP}} = 711.1(7.5)(17.4) \times 10^{-10}$.
- Full controlled continuum extrapolation and matching to perturbation theory. Model assumptions are put on only for small corrections from FV/QED/isospin breaking. Total error is 2.6%, dominated by FV.
- Our Lattice QCD results are consistent with "No New Physics" as well as Phenomenological Dispersive Methods with a conservative systematic errors.
- Lat-Pheno. comparisons are made for HVP: consistent at small Q^2 , but lattice tends to be larger, leading to larger $a_{\mu,lat}^{LO-HVP}$.
- Need $\sim 0.2\%$ precision to match Fermilab/J-PARC experiments!!
 - lat-pheno combined analyses: window method (per-mil level precision at present statistics).
 - e new technique to reduce statistical errors (per-mil level precision at present statistics).

- **③** control FV effects directly based on the first-principle.
- simulations with QED and isospin breaking corrections taken account.