Hadronic light-by-light contribution to the muon anomalous magnetic moment from lattice QCD

Tom Blum(UCONN/RBRC), Norman Christ (Columbia), Masashi Hayakawa (Nagoya), Taku Izubuchi (BNL/RBRC), Luchang Jin (UConn/RBRC), Chulwoo Jung (BNL), Christoph Lehner (BNL), (RBC and UKQCD Collaborations)

Mainz Institute of Theoretical Physics

June 18, 2018

Outline I

1 Hadronic light-by-light (HLbL) scattering contribution

The desired amplitude \cdots is obtained from a Euclidean space lattice calculation $\mathcal{M}_{\nu}(\vec{q}) = \lim_{t_{
m src}
ightarrow -\infty} e^{\mathcal{E}_{q/2}(t_{
m snk} - t_{
m src})} \sum e^{-irac{\vec{q}}{2}\cdot(\vec{x}_{
m snk} + \vec{x}_{
m src})} e^{i\vec{q}\cdot\vec{x}_{
m op}} \mathcal{M}_{
u}(x_{
m snk}, x_{
m op}, x_{
m src}),$ $t_{enl} \rightarrow \infty$ $\vec{X}_{snk}, \vec{X}_{src}$ where $-e\mathcal{M}_{\nu}(x_{\mathrm{src}}, x_{\mathrm{op}}, x_{\mathrm{snk}}) = \langle \mu(x_{\mathrm{snk}}) J_{\nu}(x_{\mathrm{op}}) \overline{\mu}(x_{\mathrm{src}}) \rangle$ $= -e \sum \sum \mathcal{F}_{\nu}(x,y,z,x',y',z',x_{\rm op},x_{\rm snk},x_{\rm src}).$ X, V, Z, x', v', z'

and

$$\left[\left(\frac{-i\not\!q^+ + m_\mu}{2E_{q/2}}\right)\left(F_1(q^2)\gamma_\nu + i\frac{F_2(q^2)}{4m}[\gamma_\nu, \gamma_\rho]q_\rho\right)\left(\frac{-i\not\!q^- + m_\mu}{2E_{q/2}}\right)\right]_{\alpha\beta} = \left(\mathcal{M}_\nu(\vec{q})\right)_{\alpha\beta},$$

$$i^{4}\mathcal{H}_{\rho,\sigma,\kappa,\nu}^{C}(x,y,z,x_{op}) = \sum_{q=u,d,s} \frac{(e_{q}/e)^{4}}{6} \langle \operatorname{tr} \left[-i \quad \gamma_{\rho} S_{q}(x,z) i \gamma_{\kappa} S_{q}(z,y) i \gamma_{\sigma} S_{q}(y,x_{op}) i \gamma_{\nu} S_{q}(x_{op},x) \right] \rangle_{\text{QCD}} + 5 \text{ permutations}$$

$$\begin{split} &i^{3}\mathcal{G}_{\rho,\sigma,\kappa}(\vec{q};x,y,z) \\ &= e^{\sqrt{m^{2}+\vec{q}^{2}/4}(t_{snk}-t_{src})} \sum_{x',y',z'} \mathcal{G}_{\rho,\rho'}(x,x') \mathcal{G}_{\sigma,\sigma'}(y,y') \mathcal{G}_{\kappa,\kappa'}(z,z') \\ &\times \sum_{\vec{x}_{snk},\vec{x}_{src}} e^{-i\vec{q}/2 \cdot (\vec{x}_{snk}+\vec{x}_{src})} S\left(x_{snk},x'\right) i\gamma_{\rho'} S(x',z') i\gamma_{\kappa'} S(z',y') i\gamma_{\sigma'} S\left(y',x_{src}\right) + 5 \text{ permutations} \end{split}$$

- Do all sums in the QED part exactly (using FFT's),
- QCD part done stochastically
- Key idea: contribution exponentially suppressed with r = |x y|, so importance sample, concentrate on $r \lesssim \lambda_{\pi}^{\text{compton}}$
- space-time translational invariance allows coordinates relative to the hadronic loop

$$\mathcal{M}_{\nu}(\vec{q}) \;\; = \;\; \sum_{r} \left\{ \sum_{z, x_{\mathrm{op}}} \mathcal{F}_{\nu}\left(\vec{q}, \frac{r}{2}, \frac{-r}{2}, z, x_{\mathrm{op}}\right) e^{i \vec{q} \cdot \vec{x}_{\mathrm{op}}}
ight\}$$

where r = x - y, $z \to z - w$, $x_{\rm op} \to x_{\rm op} - w$ and w = (x + y)/2

- We sum all the internal points over the entire space-time except we fix x + y = 0.
- (x, y) pairs stochastically sampled, z and x_{op} sums exact

$$\langle \mu(\vec{p}')|J_{\nu}(0)|\mu(\vec{p})\rangle = -e\bar{u}(\vec{p}')\left(F_1(q^2)\gamma_{\nu}+i\frac{F_2(q^2)}{4m}[\gamma_{\nu},\gamma_{\rho}]q_{\rho}\right)u(\vec{p})$$

- implies $F_2(0)$ only accessible by extrapolation $q \rightarrow 0$.
- Form is due to Ward Identity, or charge conservation
- ullet need WI to be exact on each config, or error blows up as ec q
 ightarrow 0
- To enforce WI compute average of diagrams with all possible insertions of $J_{\nu}(x_{\rm op})$

Point source method in QCD+pQED (L. Jin) [Blum et al., 2016]

• WI allows a moment method that projects directly to q=0

$$\begin{split} \mathcal{M}_{\nu}(\vec{q}) &= \sum_{r,z,x_{\mathrm{op}}} \mathcal{F}_{\nu}^{\mathsf{C}} \Big(\vec{q}, \frac{r}{2}, -\frac{r}{2}, z, x_{\mathrm{op}} \Big) \Big(e^{i\vec{q}\cdot\vec{x}_{\mathrm{op}}} - 1 \Big) \\ &\approx \sum_{r,z,x_{\mathrm{op}}} \mathcal{F}_{\nu}^{\mathsf{C}} \Big(\vec{q}, \frac{r}{2}, -\frac{r}{2}, z, x_{\mathrm{op}} \Big) (i\vec{q}\cdot\vec{x}_{\mathrm{op}}) \\ &\frac{\partial}{\partial q_{i}} \mathcal{M}_{\nu}(\vec{q})|_{\vec{q}=0} &= i \sum_{r,z,x_{\mathrm{op}}} \mathcal{F}_{\nu}^{\mathsf{C}} \Big(\vec{q}=0, r, -r, z, x_{\mathrm{op}} \Big) (x_{\mathrm{op}})_{i} \end{split}$$

Sandwich $\mathcal{M}_{\nu}(\vec{q})$ between positive energy Dirac spinors $u(\vec{0},s), \ \bar{u}(\vec{0},s)$

$$\overline{u}(\vec{0},s')\left(\frac{F_2(q^2=0)}{2m_{\mu}}\frac{i}{2}[\gamma_i,\gamma_j]\right)u(\vec{0},s)=\overline{u}(\vec{0},s')\frac{\partial}{\partial q_j}\mathcal{M}_i(\vec{q})|_{\vec{q}=\vec{0}}u(\vec{0},s)$$

multiply both sides by $\frac{1}{2}\epsilon_{ijk}$, sum over *i* and *j*,

$$\frac{F_2(0)}{m}\bar{u}_{s'}(\vec{0})\frac{\vec{\Sigma}}{2}u_s(\vec{0}) = \sum_r \left[\sum_{z,x_{\rm op}} \frac{1}{2}\vec{x}_{\rm op} \times \bar{u}_{s'}(\vec{0})i\vec{\mathcal{F}}^{C}\left(\vec{0};x=-\frac{r}{2},y=+\frac{r}{2},z,x_{\rm op}\right)u_s(\vec{0})\right]$$

where $\Sigma_i = \frac{1}{4i} \epsilon_{ijk} [\gamma_j, \gamma_k]$.

Lattice setup

- Photons: Feynman gauge, ${\sf QED}_L$ [Hayakawa and Uno, 2008] (omit all modes with $ec{q}=0)$
- Gluons: Iwasaki (I) gauge action (RG improved, plaquette+rectangle)
- muons: $L_s = \infty$ free domain-wall fermions (DWF)
- quarks: Möbius-DWF

2+1f Möbius-DWF, I and I-DSDR physical point QCD ensembles (RBC/UKQCD) [Blum et al., 2014]

	48I	64I	24D	32D	32D fine	48D
a^{-1} (GeV)	1.73	2.36	1.0	1.0	1.38	1.0
<i>a</i> (fm)	0.114	0.084	0.2	0.2	0.14	0.2
<i>L</i> (fm)	5.47	5.38	4.8	6.4	4.6	9.6
Ls	48	64	24	24	24	24
$m_\pi~({ m MeV})$	139	135	140	140	140	140
$m_{\mu}~({ m MeV})$	106	106	106	106	106	106
meas (con,disco)	65,65	43,44	33,32	42,20	8,7	62,0

Continuum and ∞ volume limits in QED $_{\scriptscriptstyle [Blum\,et\,al.,\,2016]}$

Test method in pure QED QED systematics large, $O(a^4)$, $O(1/L^2)$, but under control

Limits quite consistent with well known PT result

Physical point cHLbL contribution, 48³, 1.73 GeV lattice [Blum et al., 2017a]

- Measurements on 65 configurations, separated by 20 trajectories
- ignore strange quark contribution (down by 1/17 plus mass suppressed)
- exponentially suppressed with distance
- most of contribution by about 1 fm

Disconnected contributions

SU(3) flavor:

٠

• To ensure loops are connected by gluons, explicit "vacuum" subtraction is required

Leading disconnected contribution

- We use two point sources at y and z, chosen randomly. The points sinks x_{op} and x are summed over exactly on lattice.
- Only point source quark propagators are needed. We compute M point source propagators and all M^2 combinations are used to perform the stochastic sum over r = z y (M^2 trick).

$$\begin{aligned} \mathcal{F}^{D}_{\nu}\left(x, y, z, x_{\text{op}}\right) &= (-ie)^{6}\mathcal{G}_{\rho,\sigma,\kappa}(x, y, z)\mathcal{H}^{D}_{\rho,\sigma,\kappa,\nu}(x, y, z, x_{\text{op}}) \\ \mathcal{H}^{D}_{\rho,\sigma,\kappa,\nu}(x, y, z, x_{\text{op}}) &= \left\langle \frac{1}{2}\Pi_{\nu,\kappa}\left(x_{\text{op}}, z\right)\left[\Pi_{\rho,\sigma}(x, y) - \Pi^{\text{avg}}_{\rho,\sigma}(x - y)\right]\right\rangle_{\text{QCD}} \\ \Pi_{\rho,\sigma}(x, y) &= -\sum_{q} (e_{q}/e)^{2}\operatorname{Tr}[\gamma_{\rho}S_{q}(x, y)\gamma_{\sigma}S_{q}(y, x)]. \end{aligned}$$

Leading disconnected contribution

Because of parity, the expectation value for the (moment of) left loop averages to zero.
 [Π_{ρ,σ}(x, y) − Π^{avg}_{ρ,σ}(x − y)] is only a noise reduction technique. Π^{avg}_{ρ,σ}(x − y) should remain constant through out the entire calculation.

Physical point dHLbL contribution [Blum et al., 2017a]

- Use AMA with 2000 low-modes of the Dirac operator and
- randomly choose 256 "spheres" of radius 6 lattice units
- Uniformly sample 4 (unique) points in each
- do half as many strange quark props
- Construct $(1024 + 512)^2$ point-pairs per configuration

Physical point dHLbL contribution, 48³, 1.73 GeV lattice [Blum et al., 2017a]

 $\bullet\,$ strange contributes less than 5 $\%\,$

acc-r-ve-plot ⊢↔

Continuum extrapolation, Iwasaki ensembles (preliminary)

- linear in $a^2 \rightarrow 0$ extrapolation
- Effects tend to cancel between cHLbL and dHLbL contributions
- Collecting more statistics

 QED_L , connected diagram

(all particles with physical masses)

QED_L, leading disconnected diagram

 QED_L , connected + leading disconnected

(all particles with physical masses)

QED_L, $a \rightarrow 0$ and $L \rightarrow \infty$ limits (PRELIMINARY)

• linear in lattice spacing-squared and $1/L^2$

• ignore correlations between connected and disconnected $a_{\mu}(a, L) = a_{\mu}(0, \infty) + a_I a^2 + a_{ID} a^2 + b_0 1/L^2$

- connected: $0.171 \pm 0.027 (\alpha/\pi)^3$
- disconnected: $-0.122 \pm 0.023 (lpha/\pi)^3$
- sum: $0.049 \pm 0.035 (\alpha/\pi)^3 = 6.1 \pm 4.4 \times 10^{-10}$
- $\bullet\,$ Glasgow Consensus is $10.5\pm2.6\times10^{-10}\,$
- warning: need sub-leading disconnected contributions

 QED_∞ [Green et al., 2015, Asmussen et al., 2016, Lehner and Izubuchi, 2015, Jin et al., 2015, Blum et al., 2017b]

- $\bullet\,$ Mainz group made first concrete proposal for QED_∞
- QED_{∞}: muon, photons computed in infinite volume (*c.f.* HVP)
- QCD mass gap: $\mathcal{H}^{\mathcal{C}}_{
 ho,\sigma,\kappa,
 u}(x,y,z,x_{\mathrm{op}})\sim \exp -m_{\pi} imes \mathrm{dist}(x,y,z,x_{\mathrm{op}})$
- QED weight function does not grow exponentially
- So leading FV error is exponentially suppressed (c.f. HVP) instead of $O(1/L^2)$

QED_∞ weighting function $_{[Blum\mbox{ et al., 2017b}]}$

• Note Hermitian part gives same F_2 but is infrared finite,

$$\mathfrak{G}^{(1)}_{
ho,\sigma,\kappa}(x,y,z)=rac{1}{2}\mathfrak{G}_{
ho,\sigma,\kappa}(x,y,z)+rac{1}{2}\mathfrak{G}_{
ho,\sigma,\kappa}(x,y,z)^{\dagger}$$

• In units of the muon mass m_{μ} ,

$$\mathfrak{G}_{\sigma,\kappa,\rho}^{(1)}(y,z,x) = \frac{\gamma_0+1}{2}i\gamma_{\sigma}(-\partial \hspace{-0.15cm}/_{y}+\gamma_0+1)i\gamma_{\kappa}(\partial \hspace{-0.15cm}/_{x}+\gamma_0+1)i\gamma_{\rho}\frac{\gamma_0+1}{2} \\ \times \frac{1}{4\pi^2}\int d^4\eta \frac{1}{(\eta-z)^2}f(\eta-y)f(x-\eta)$$

QED_∞ subtraction $_{[Blum\ et\ al.,\ 2017b]}$

- Current conservation implies $\sum_{x} \mathcal{H}^{C}_{\rho,\sigma,\kappa,\nu}(x,y,z,x_{op}) = 0$ ($V \to \infty$ and $a \to 0$)
- Subtract terms that vanish as $a, V \to 0$ $\mathfrak{G}_{\rho,\sigma,\kappa}^{(2)}(x,y,z) = \mathfrak{G}_{\rho,\sigma,\kappa}^{(1)}(x,y,z) - \mathfrak{G}_{\rho,\sigma,\kappa}^{(1)}(y,y,z) - \mathfrak{G}_{\rho,\sigma,\kappa}^{(1)}(x,y,y) + \mathfrak{G}_{\rho,\sigma,\kappa}^{(1)}(y,y,y)$
- subtraction changes (may reduce) a and V systematic errors (c.f. HVP)
- Further, $\mathfrak{G}^{(2)}_{\rho,\sigma,\kappa}(z,z,x) = 0$ so short distance $O(a^2)$ effects suppressed.

- The 4-dim integral is (pre-)calculated numerically with CUBA library (cubature rules).
- Translation/rotation symmetry: parametrize (x, y, z) by 5 parameters on N^5 grid points (Mainz uses 3 params by averaging over muon time direction).
- (linearly) Interpolate grid in stochastic integral over (x, y)

 QED_{∞} results- pure QED, lattice-spacing error [Blum et al., 2017b]

QED_{∞} results- pure QED, finite volume error $_{\text{[Blum et al., 2017b]}}$

- Take $F_2(\infty) \approx F_2(mL = 9.6)$
- \bullet results for $m_{\rm loop}=m_{\rm line}$ (a_e) and $m_{\rm loop}=2m_{\rm line}$
- $F_2/(\alpha/\pi)^3 = 0.3686(37)(35)$ and 0.1232(30)(28) compared to
- QED perturbation theory results : 0.371 and 0.120

 ${\sf QED}_\infty$, connected diagram, a=0.2 fm $_{\scriptscriptstyle ({\sf preliminary})}$

Outline I

1 Hadronic light-by-light (HLbL) scattering contribution

Hadronic light-by-light summary and outlook

- Lattice QCD(+QED) calculations done with physical masses, large boxes + improved measurement algorithms
- Physical point calculations published at a = 0.114 fm, 5.5 fm box [Blum et al., 2017a]
- Preliminary $a \rightarrow 0$, $L \rightarrow \infty$ limits taken in QED_L,s
 - connected, disconnected significant corrections, but total has mild dependence
 - improving statistics
 - need non-leading disconnected diagrams (see talk by Hayakawa)
 - consistent with model, dispersive results (somewhat smaller CV).
- QED_∞ noisier, a o 0, $L o \infty$ limits not yet available
- unlikely that HLbL contribution will rescue standard model

On track for solid result in time for E989

Acknowledgments

- This research is supported in part by the US DOE
- Computational resources provided by the RIKEN BNL Research Center, RIKEN, USQCD Collaboration, and the ALCF at Argonne National Lab under the ALCC program

Outline I

1 Hadronic light-by-light (HLbL) scattering contribution

Asmussen, N., Green, J., Meyer, H. B., and Nyffeler, A. (2016).

Position-space approach to hadronic light-by-light scattering in the muon g-2 on the lattice.

PoS, LATTICE2016:164.

Benayoun, M., Bijnens, J., Blum, T., Caprini, I., Colangelo, G., et al. (2014).
 Hadronic contributions to the muon anomalous magnetic moment Workshop. (g - 2)_µ: Quo vadis? Workshop. Mini proceedings.

🔋 Blum, T., Chowdhury, S., Hayakawa, M., and Izubuchi, T. (2015).

Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD.

Phys.Rev.Lett., 114(1):012001.

Blum, T., Christ, N., Hayakawa, M., Izubuchi, T., Jin, L., Jung, C., and Lehner, C. (2017a).

Connected and Leading Disconnected Hadronic Light-by-Light Contribution to the Muon Anomalous Magnetic Moment with a Physical Pion Mass.

Phys. Rev. Lett., 118(2):022005.

Blum, T., Christ, N., Hayakawa, M., Izubuchi, T., Jin, L., Jung, C., and Lehner, C. (2017b).

Using infinite volume, continuum QED and lattice QCD for the hadronic light-by-light contribution to the muon anomalous magnetic moment.

Blum, T., Christ, N., Hayakawa, M., Izubuchi, T., Jin, L., and Lehner, C. (2016). Lattice Calculation of Hadronic Light-by-Light Contribution to the Muon Anomalous Magnetic Moment.

Phys. Rev., D93(1):014503.

Blum, T. et al. (2014).

Domain wall QCD with physical quark masses.

Colangelo, G., Hoferichter, M., Procura, M., and Stoffer, P. (2014).
 Dispersive approach to hadronic light-by-light scattering.
 JHEP, 1409:091.

Colangelo, G., Hoferichter, M., Procura, M., and Stoffer, P. (2015). Dispersion relation for hadronic light-by-light scattering: theoretical foundations. Colangelo, G., Hoferichter, M., Procura, M., and Stoffer, P. (2017). Dispersion relation for hadronic light-by-light scattering: two-pion contributions. *JHEP*, 04:161.

- Green, J., Gryniuk, O., von Hippel, G., Meyer, H. B., and Pascalutsa, V. (2015).
 Lattice QCD calculation of hadronic light-by-light scattering.
 Phys. Rev. Lett., 115(22):222003.
- 📔 Hayakawa, M. and Uno, S. (2008).

QED in finite volume and finite size scaling effect on electromagnetic properties of hadrons.

```
Prog. Theor. Phys., 120:413-441.
```


The Muon g-2.

-

```
Phys. Rept., 477:1–110.
```

🧃 Jin, L., Blum, T., Christ, N., Hayakawa, M., Izubuchi, T., and Lehner, C. (2015).

Lattice Calculation of the Connected Hadronic Light-by-Light Contribution to the Muon Anomalous Magnetic Moment.

In Proceedings, 12th Conference on the Intersections of Particle and Nuclear Physics (CIPANP 2015): Vail, Colorado, USA, May 19-24, 2015.

Lehner, C. and Izubuchi, T. (2015).

Towards the large volume limit - A method for lattice QCD + QED simulations. *PoS*, LATTICE2014:164.

Pauk, V. and Vanderhaeghen, M. (2014).

Two-loop massive scalar three-point function in a dispersive approach.

Prades, J., de Rafael, E., and Vainshtein, A. (2009).

Hadronic Light-by-Light Scattering Contribution to the Muon Anomalous Magnetic Moment.