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Talks on HLbL on the lattice at UConn workshop in March 2018

• HLbL contribution to the muon g − 2 on the lattice: overall strategy
(AN, Mainz)

• HLbL contribution to the muon g − 2 on the lattice: finite volume and
discretization effects (Nils Asmussen, Mainz)

• HLbL contribution to the muon g − 2 on the lattice: overall strategy
(Luchang Jin, UConn/RBRC)

• Discretization errors in Light-by-Light scattering calculations (Tom Blum,
UConn/RBRC)

• HLbL contribution to (g − 2)µ on the lattice: finite-volume effects (Christoph
Lehner, BNL)

• Models and HLbL: disconnected contributions and first steps towards finite
volume corrections (Johan Bijnens, Lund)

• Disconnected quark loop contribution to Hadronic Light-by-light diagram (Taku
Izubuchi, BNL/RBRC)

• The neutral pion decay and the chiral anomaly on the lattice (Shoji Hashimoto,
KEK, talk cancelled, slides available)

• Pion transition form factor on the lattice, pion-pole contribution to g − 2
(Antoine Gérardin, Mainz)

• Determining the long-distance contribution to the HLbL portion of g − 2 in
position space from the π0 pole (Norman Christ, Columbia)

• Pion transition form factor from lattice QCD in position space (Cheng Tu,
UConn)

• HLbL forward scattering sum rules on the lattice (Antoine Gérardin, Mainz)



Outline

• Brief recap of approaches to HLbL on the lattice and status before
the UConn meeting

• New results on HLbL in g − 2 presented at the UConn meeting

• π0 → γ∗γ∗ transition form factor on the lattice
Pion-pole contribution to muon g − 2 on the lattice

• Conclusions, Tasks for Mainz workshop and Outlook



Muon g − 2: current status

Contribution aµ × 1011 Reference

QED (leptons) 116 584 718.853± 0.036 Aoyama et al. ’12

Electroweak 153.6 ± 1.0 Gnendiger et al. ’13

HVP: LO 6887.7 ± 33.8 Jegerlehner ’17

NLO -99.3 ± 0.7 Jegerlehner ’17

NNLO 12.4 ± 0.1 Kurz et al. ’14

HLbL 102 ± 39 Jegerlehner ’15 (JN ’09)

NLO 3 ± 2 Colangelo et al. ’14

Theory (SM) 116 591 778 ± 52

Experiment 116 592 089 ± 63 Bennett et al. ’06

Experiment - Theory 311 ± 81 3.8 σ

HLbL based on Jegerlehner, AN ’09, with downward shift because of smaller axial-vector
contribution (Pauk, Vanderhaeghen ’14; Jegerlehner ’14, ’15).

Other frequently used estimate for HLbL: aHLbL
µ = (105± 26)× 10−11

(Prades, de Rafael, Vainshtein ’09 (“Glasgow consensus”)).

Discrepancy a sign of New Physics ?

Goal of Muon g − 2 Theory Initiative (and this workshop and for the
Whitepaper): more precise determination of HVP; more reliable value and error
estimate for HLbL that does not rely completely on model calculations.
In order to fully profit from future g − 2 experiments at Fermilab (E989) and
J-PARC (E34) with four-fold improvement δaµ = 16× 10−11.



Brief recap of approaches and status of HLbL on the lattice

before the UConn meeting



RBC-UKQCD approach to HLbL

Blum, Hayakawa, et al. ’05, . . . , ’15:

• Put QCD + (quenched) QED
on the lattice.

• QED treated non-perturbatively
⇒ all orders in α

• Need to subtract lower order
non-HLbL contribution
⇒ very noisy on the lattice.
First signal for F2(q2) for
q2 ≥ 0.11 GeV2 only in ’15.

Jin et al. ’15, ’16, ’17:

• Step by step improvement of method to reduce statistical
error by one or two orders of magnitude and remove some
systematic errors.

• Perturbative expansion in QED to deal only with HLbL
contribution (no subtraction needed).

• Calculate aHLbL
µ = F2(q2 = 0) via moment method in

position-space (no extrapolation to q2 = 0 needed).

• Exact propagator on lattice between z, z ′.
Stochastic photon propagators between x , x ′ and y , y ′

(did not work in practice).
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RBC-UKQCD approach to HLbL (talk by Luchang Jin)
Point source photon method 20/36
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Fν
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i4Hρ,σ,κ,ν
C (x, y, z, xop) (8)

=
∑
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(eq/e)4

6

〈
tr

[
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QCD
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
• Use exact photon propagators also between x , x ′ and y , y ′ and sample points x , y

stochastically.

• Sum all internal points over entire space time, except that one fixes x + y = 0.

• Time coordinate of current (xop)0 is integrated, not held fixed.



RBC-UKQCD approach to HLbL (talk by Taku Izubuchi)

! Treat all 3 photon propagators exactly   (3 analytical photons) , which makes the 

quark loop and the lepton line connected :  

disconnected problem in Lattice QED+QCD  -> connected problem with analytic 

photon

! QED 2-loop in coordinate space. Stochastically sample, two of quark-photon 

vertex location x,y, z and xop is summed over space-time exactly

! Short separations, Min[ |x-z|,|y-z|,|x-y| ] < R ~ O(0.5) fm, which has a large 

contribution due to confinement, are summed for all pairs

! longer separations, Min[ |x-z|,|y-z|,|x-y| ]  >= R, are done stochastically with 

a probability shown above  ( Adaptive Monte Carlo sampling )

Coordinate space Point photon method 
[ Luchang Jin et al. , PRD93, 014503 (2016) ]

QED
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RBC-UKQCD approach to HLbL (continued)
Jin et al. ’16, ’17

• Found empirically: short separations
r = min{|x − z|, |y − z|, |x − y |} < rmax ∼ 0.6 fm
(4-6 in lattice units) give large contribution due to
confinement. Are summed for all pairs.

• Longer separations r > rmax are done
stochastically with empirical probability
distribution.

• Test: Reproduce result for QED with muon loop
after extrapolation to a = 0 and L =∞.
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• Calculate leading quark-disconnected diagrams (dHLbL).
xsrc xsnkz′, κ′ y′, σ′ x′, ρ′

xop, ν

z, κ y, σ x, ρ

Results (mπ,phys, lattice spacing a−1 = 1.73 GeV (a = 0.114 fm), L = 5.5 fm):

acHLbL
µ = (116.0± 9.6)× 10−11 (quark-connected diagrams)

adHLbL
µ = (−62.5± 8.0)× 10−11 (leading quark-disconnected diagrams)

aHLbL
µ = (53.5± 13.5)× 10−11

Statistical error only ! Missing systematic effects:

• Expect large finite-volume effects from QED ∼ 1/L2. Blum et al. ’17: use infinite
volume, continuum QED∞ (similar to Mainz approach: Asmussen et al. ’16).

• Expect large finite-lattice-spacing effects.

• Omitted subleading quark-disconneced diagrams (10% effect ?).



Mainz approach to HLbL

Developed independently from RBC-UKQCD
Asmussen, Gérardin, Green, Meyer, AN ’15 – ’17
(Idea by Harvey Meyer after Muon g − 2 workshop at Mainz in April 2014)

• QCD blob: lattice regularization

• Everything else: position-space perturbation theory in
Euclidean formulation

Similarities to approach by RBC-UKQCD ’15 –’17:

• Position-space (most natural for lattice QCD)

• Perturbative treatment of the QED part

• Get directly aHLbL
µ = F2(k2 = 0) as spatial moment

Strengths of our approach:

• Semi-analytical calculation of QED kernel

• QED part computed in continuum and in infinite volume (QED∞)

• Lorentz covariance manifest

• No power law effects 1/L2 in the volume

Challenges:

• Need to calculate a QCD four-point function on the lattice

• Numerical efficiency for QCD not yet shown



HLbL master formula in position-space

aHLbL
µ =

me6

3

∫
d4y

∫
d4x L̄[ρ,σ];µνλ(x , y)︸ ︷︷ ︸

QED

iΠ̂ρ;µνλσ(x , y)︸ ︷︷ ︸
QCD

x y
0

z

After contracting the Lorentz indices the integration reduces to a 3-dimensional
integral over x2, y2, x · y = |x ||y | cosβ:

aHLbL
µ =

me6

3

∫
d4y︸ ︷︷ ︸

=2π2
∫∞

0 d|y||y|3

∫
d4x︸ ︷︷ ︸

=4π
∫∞

0 d|x||x|3
∫ π

0 dβ sin2(β)

L̄[ρ,σ];µνλ(x , y)︸ ︷︷ ︸
QED

iΠ̂ρ;µνλσ(x , y)︸ ︷︷ ︸
QCD

QCD four-point function (spatial moment):

iΠ̂ρ;µνλσ(x , y) = −
∫

d4z zρ
〈
jµ(x)jν(y)jσ(z)jλ(0)〉

QED kernel function L̄[ρ,σ];µνλ(x , y)

• Weights the QCD four-point function in position-space.

• Tensor decomposition leads to 6 weight functions (and derivatives thereof) that
depend on the 3 variables x2, y2, x · y .

• We have computed these weight functions on a grid to about 5 digits precision,
once and for all, and stored on disk.

Tests of QED kernel function: pion-pole contribution with VMD model, lepton-loop in
QED, evaluated semi-analytically in position-space in continuum and infinite volume.



Numerical tests of QED kernel: (I) Pion-pole contribution to aHLbL
µ

Result with VMD model for arbitrary pion mass can easily be obtained from
3-dimensional momentum-space representation (Jegerlehner + AN ’09).

Integrand after integration over |x |, β:
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• Cutoff for x integration: |x |max = 4.05 fm.

• All 6 weight functions contribute to final result, some only at the percent level.

• Agrees at percent level with known results for mπ > 300 MeV.

• |x |max, |y |max > 4 fm needed for mπ < 300 MeV.



Numerical test of QED kernel: (II) Lepton loop contribution aLbL
µ in QED

Integrand of lepton loop contribution aLbL
µ :

0 2 4 6 8 10

0

2

4

6

8

|y|/fm

f
(|y
|)
×

10
9
fm

ml = mµ/2
ml = mµ

ml = 2mµ

ml/mµ aLbL
µ × 1011 (exact) aLbL

µ × 1011 Precision Deviation
1/2 1229.07 1257.5(6.2)(2.4) 0.5% 2.3%

1 464.97 470.6(2.3)(2.1) 0.7% 1.2%
2 150.31 150.4(0.7)(1.7) 1.2% 0.06%

1st uncertainty from 3D integration, 2nd uncertainty from extrapolation to small |y |.
Behavior for small |y | compatible with f (|y |) ∝ mµ|y | log2(mµ|y |).

Analytical results for aLbL
µ with ml = mµ, 2mµ reproduced at the percent level.

(exact values: Laporta + Remiddi ’93, numbers courtesy of Massimo Passera)



New results on HLbL in g − 2 presented at UConn meeting



New results by Mainz group at UConn meeting

Integrand of pion-pole contribution in VMD model for physical pion mass (talk
by AN):
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• Result of integration: 57.9× 10−11. The steep rise to the peak and the
long negative tail is not fully captured by the density of points and the
extent of the grid where we have evaluated the QED kernel.

• One needs to go to very large values of |x | and |y |, i.e. very large lattice
volumes ∼ 10 fm to reproduce known result 57.0× 10−11.



Challenges in view of the lattice computation (talk by Nils Asmussen)

• Contributions are quite long range → finite volume effects

• Integrands peaked at small distances → discretization effects

• A way to improve: do subtractions on the QED kernel (first proposed by
Blum et al. ’17).

Conserved current is a total derivative: jµ(x) = ∂
(x)
ν (xµjν(x))

→
∫

d4x jµ(x) = 0 (in infinite volume and in continuum)

Therefore we can always subtract terms from QED kernel, that do not
depend on both x and y without changing aHLbL

µ .

• We try (short notation):

• L(0) = L̄[ρ,σ];µνλ(x , y) (standard kernel, L(0)(0, 0) = 0)

• L(1) = L̄[ρ,σ];µνλ(x , y)− 1
2
L̄[ρ,σ];µνλ(x , x)− 1

2
L̄[ρ,σ];µνλ(y , y)

⇒ L(1)(x , x) = 0

• L(2) = L̄[ρ,σ];µνλ(x , y)− L̄[ρ,σ];µνλ(0, y)− L̄[ρ,σ];µνλ(x , 0)

⇒ L(2)(x , 0) = L(2)(0, y) = 0



Integrand of pion-pole contribution with subtractions for physical pion mass
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• Integrals for all kernels lead to same aHLbL
µ in the continuum and in infinite

volume (as they should !).

• Shape of L(1) similar to standard kernel L(0), maybe even a bit worse.

• L(2) better behaved for integration on lattice: peak less pronounced (less
steep at short-distances), no negative tail, a bit less long-ranged
→ expect reduced discretization effects (lattice artifacts) and reduced
finite volume effects in lattice calculation.



First steps towards the lattice calculation

Finite lattice:
∫
x,y
→

∑
x,y

Four-point function iΠ̂: still in continuum, infinite volume for integral over z

Master formula:

aHLbL
µ =

me6

3
2π2

∑
|y|

a|y||y |3
[
a4
∑
x∈Λ

L̄[ρ,σ];µνλ(x , y) iΠ̂ρ;µνλσ(x , y)
]

• We can evaluate
∑
|y| a|y| on an arbitrary set of |y | and do the integration

using e. g. the trapezoidal rule.

• Focus on default kernel L(0) and kernel L(2) which seemed to be best.



Integrand of pion-pole contribution to aHLbL
µ for mπ = 300 MeV
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• Dashed line: default kernel L(0), solid line: subtracted kernel L(2)

• Constant volume mµL = 7.2, different lattice spacings a

• Less dependence on discretization effects with kernel L(2)



Continuum extrapolation for pion-pole for mπ = 300 MeV
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• The extrapolation works very well for both kernels.

• The discretization effects with the subtracted kernel L(2) are smaller.



Full Lattice QED computation

Master formula:

aHLbL
µ =

me6

3
2π2

∑
|y|

a|y||y |3
[
a4
∑
x∈Λ

L̄[ρ,σ];µνλ(x , y) iΠ̂ρ;µνλσ(x , y)
]

iΠ̂ρ;µνλσ(x , y) = −a4
∑
z∈Λ

zρ
〈
jµ(x) jν(y) jσ(z) jλ(0)

〉

• iΠ̂ for lepton loop in lattice QED

• Same code used as for lattice QCD calculation

More details about these tests with Lattice QED and first results for the full
Lattice QCD calculation: next talk by Nils Asmussen.



New results on HLbL in g − 2 by RBC-UKQCD

at UConn meeting



Discretization effects (talk by Tom Blum)

Compared to published result (Blum et al. PRL118 (2017)), consider second ensemble
with physical pion mass and finer lattice spacing:

a−1 = 1.73 GeV (a = 0.114 fm),L = 5.47 fm (483 × 96 I)

a−1 = 2.36 GeV (a = 0.084 fm),L = 5.38 fm (643 × 128 I)

Study continuum limit (connected and leading disconnected):

cHLBL: simple continuum limit (preliminary)
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dHLbL: lattice spacing effect (preliminary)
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Discretization effects (talks by Tom Blum and Taku Izubuchi)

Add new ensembles with physical pion mass, coarser lattice spacing and different
gauge action:

a−1 = 1.0 GeV (a = 0.20 fm),L = 4.8 fm (243 × 64 ID)

Study lattice spacing effects (connected and leading disconnected):

cHLbL Different lattice spacings

!"

cHLbL contribution: lattice spacing effect (preliminary)
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cHLbL: lattice spacing effect (preliminary)
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Finite volume effects (talk by Christoph Lehner)

Lattice QCD ensembles for the quark loop

48I (483 × 96), L = 5.47 fm, a−1 = 1.730 GeV, mπ = 139 MeV
64I (643 × 128), L = 5.35 fm, a−1 = 2.359 GeV, mπ = 139 MeV
24D (243 × 64), L = 4.67 fm, a−1 = 1.015 GeV, mπ = 141 MeV
32D (323 × 64), L = 6.22 fm, a−1 = 1.015 GeV, mπ = 141 MeV
48D (483 × 64), L = 9.33 fm, a−1 = 1.015 GeV, mπ = 141 MeV

All of them are chirally symmetric domain-wall configurations with
2+1 flavors.

So far studied: QEDL on 24D, 48I, and 64I; QED∞ on 24D, 48D,
and 48I.

For QED∞ for now only show connected diagram since
disconnected QED∞ analysis is still too premature.

Technical progress to handle large volumes: Multi-Grid Lanczos
arXiv:1710.06884

9 / 17



Finite volume effects (talk by Christoph Lehner) (cont.)

Study of QEDL (variable Rmin on x-axis)

Connected diagram in QEDL on 24D and 48I lattices:
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Finite volume effects (talk by Christoph Lehner) (cont.)

Study of QED∞: effect of subtraction
(note different variable Rmax on x-axis compared to QEDL !)

Connected diagram in QED∞ on 24D:
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Subtraction that helped reduce discretization and volume errors in lepton-loop case
has significant effect on on-set of plateau in this plot. LD noise large.
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Connected diagram in QED∞ on 24D and 48D:
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With current poor statistics no sign of QCD FV effect. May be hidden at very long
distances? Perform study of long-distance π0-pole contribution: talk by N. Christ
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Finite volume effects (talk by Christoph Lehner) (cont.)

QEDL versus QED∞: more precise with extrapolation using QEDL !?

Consistency of QEDL and QED∞:
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QEDL, 24D, con, r=∞

This plot is preliminary and needs to be refined with a proper continuum limit since
24D and 48I have different lattice cutoff.
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Consistency of QEDL and QED∞:
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Disconnected quark loop contributions (talk by Taku Izubuchi)

SU(3) hierarchies for d-HLbL

! At ms=mud limit,  following type of disconnected HLbL diagrams

Qu + Qd + Qs = 0  [Mainz, Lehenr for HVP]

! Other diagrams  suppressed by

O(ms-mud) /3, O( (ms-mud)
2 ), and O( (ms-mud)

3 )

xsrc xsnkz′, κ′ y′, σ′ x′, ρ′

xop, ν

z, κ y, σ x, ρ

xsrc xsnky′, σ′ x′, ρ′ z′, κ′

xop, ν

z, κy, σ x, ρ

xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κy, σ x, ρ

xsrc xsnkz′, κ′ y′, σ′ x′, ρ′

xop, ν

z, κ y, σ x, ρ

xsrc xsnky′, σ′ x′, ρ′ z′, κ′

xop, ν

z, κ
y, σ x, ρ

!"#$"%&'
(

!"#$"%&')*

!"#$"%&'
+

,(

xsrc xsnkz′, κ′
y′, σ′ x′, ρ′

xop, ν

z, κ y, σ x, ρ

!"#$"%&'
*

Results for the leading disconnected contributions have been shown before.



Disconnected quark loop contributions (talk by Taku Izubuchi) (cont.)

Remaining dHLbL

xsrc xsnky′, σ′ x′, ρ′ z′, κ′

xop, ν

z, κy, σ x, ρ

xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κy, σ x, ρ

• These are the subleading disconnected diagrams in the SU(3) limit.

• The right diagram has a factor of 1/3 suppression from the multiplicity of the diagram
compare with the left diagram, i.e. the external photon is more likely to be on the loop
with three photons.

• For the left diagram, the moment method works just like the connected case. With both
QEDL or QED∞, we can sample x, y and sum over z. We can use the M2 trick for the
x, y sampling. Low-modes-averaging for the loop with z.

• For the right diagram, The moment method still works, however, we have to use a point
on the other loop as the reference point, which may be more noisy. But as mentioned
above, the right diagram is more suppressed.

!"



π0 → γ∗γ∗ transition form factor on the lattice

Pion-pole contribution to muon g − 2 on the lattice



Mainz: Transition form factor Fπ0γ∗γ∗(q
2
1 , q

2
2) from Lattice QCD

(talk by Antoine Gérardin)
Gérardin, Meyer, AN, PRD 94, 074507 (2016)

Fit lattice data on various Nf = 2 CLS ensembles with VMD, LMD, LMD+V models
for TFF to perform extrapolation to continuum and physical pion mass.
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VMD model: bad fit (χ2/d.o.f. = 2.9, uncorrelated global fit), because of wrong
high-momentum asymptotics in double-virtual case (∼ 1/Q4).

LMD model (χ2/d.o.f. = 1.3, uncorrelated global fit)

αLMD = 0.275(18)(3) GeV−1 , β = −0.028(4)(1) GeV ,MLMD
V = 0.705(24)(21) GeV

(αth = 1/(4π2Fπ) = 0.274 GeV−1, βOPE = −Fπ/3 = −0.0308 GeV)

LMD+V model (χ2/d.o.f. = 1.4, uncorrelated global fit)

αLMD+V =0.273(24)(7) GeV−1, h̄2 =−11.2(5.4)(2.7) GeV2, h̄5 =8.5(2.9)(1.4) GeV4

(h̃0 = −Fπ/3 = −0.0308 GeV, h̃1 = 0, MV1
= 0.775 GeV, MV2

= 1.465 GeV fixed at physical point)



Mainz: Pion-pole contribution to aHLbL;π0

µ from lattice QCD

(talk by Antoine Gérardin) (cont.)
Using the LMD+V model from the global fit to the lattice data, we obtain as
our preferred estimate:

aHLbL;π0

µ;LMD+V = (65.0± 8.3)× 10−11 (±12.8%)

Error from covariance matrix is statistical only.

Model aHLbL;π0

µ × 1011

LMD (lattice fit) 68.2(7.4)

LMD+V (lattice fit) 65.0(8.3)

VMD (theory) 57.0

LMD (theory) 73.7

LMD+V (theory + pheno) 62.9

Most model calculations yield results in the range aHLbL;π0

µ = (50− 80)× 10−11.

Even though LMD and LMD+V models give almost equally good fits to lattice data, they differ

for large momenta, in particular for single-virtual form factor. LMD does not obey Brodsky-Lepage

behavior.

Systematic errors: 1. Finite-time extent of the lattice. 2. Finite-size effects (no
dedicated study, data suggest rather small effect). 3. Disconnected contributions:
below 1% for 1 ensemble (mπ = 440 MeV).

Preliminary results for Nf = 2 + 1 CLS ensembles and with moving pions (→ access to
more values of q2

1 , q
2
2) also shown at UConn meeting.

Update will be presented by Antoine Gérardin at this meeting.



RBC-UKQCD: long-distance contribution to HLbL in g − 2 in position

space from π0-pole (talk by Norman Christ)
• Long distance contribution to HLbL comes from π0 exchange:

HLbL-UConn - 3/13/2018

Overview
• Long distance contribution to HLbL 

comes from the 0 exchange.

• Calculate 0 exchange from lattice QCD
– Direct calculation, without form factor 

decomposition or parameterization.
– Position-space based.
– Can be applied for large volume.

• No implementation at present.
(2)

• Calculate π0 exchange from lattice QCD

- Direct calculation, without form factor decomposition or parametrization.
- Position-space based approach.
- π0 contribution well defined at long distances in position-space.
- Can be applied for large volume. Fixed volume QCD calculation gives π0

HLbL contribution in increasing volume.

Compute π0 pole contribution by inserting sum over π0 states in 4-point function
(assuming that x and y are far separated in time direction):

HLbL-UConn - 3/13/2018

Introduce 0 states
• Compute the 0 pole contribution to:

• Assume x and y are far separated in the time 
direction and insert sum over 0 states:

• Dominant contribution              
for x0-y0 large.

(3)

Aπ0

µµ′νν′ (x, x
′
, y , y ′) =

1

(2π)3

∫
d3p

2Eπ(p)
〈0|T

(
Jµ(x)Jµ′ (x

′)
)
|π0(~p)〉〈π0(~p)|T

(
Jν(y)J′ν(y ′)

)
|0〉



RBC-UKQCD: long-distance contribution to HLbL in g − 2 in position

space from π0-pole (talk by Norman Christ) (cont.)
Using translation invariance one can rewrite vertex function:

〈0|T
(
Jµ(x)Jµ′ (x

′)
)
|π0(~p) = 〈0|T

(
Jµ(0)Jµ′ (x̃)

)
|π0(~p)〉 e i~p·~x−Epx0

= Fµµ′ (x̃ , ~p) e i~p·~x−Epx0

= Fµµ′ (x̃ ,−i ~∇x ) e i~p·~x−Epx0

One can then perform integral over ~p in sum over π0 states and with a further
long-distance approximation one obtains:

Aπ0

µµ′νν′ (x , x
′, y , y ′) = Fµµ′ (x̃ , iMπ n̂)Fνν′ (ỹ ,−iMπ n̂) ∆F (x − y ,Mπ)

where n̂ = (~x − ~y)/|x − y | and ∆F is Euclidean pion propagator in position-space.

On the other hand, the amplitude Fµµ′ (x̃ , iMπ n̂) also appears in simpler 3-point

function that involves the same γγ − π0 vertex as the 4-point function:

Bµµ′ (x , x ′, z) = 〈0|T
(
Jµ(x)Jµ′ (x

′)π0(z)
)
|0〉

Bπ0

µµ′ (x , x
′, z) = Fµµ′ (x̃ , iMπ n̂)Z

1/2

π0 ∆F (x − z,Mπ)

Z
1/2

π0 = 〈π0(~p = 0)|π0(0)|0〉
Combining the results:

Aπ0

µµ′νν′ (x , x
′, y , y ′) = Bπ0

µµ′ (x , x
′, z)Bπ0

νν′ (y , y
′, z)

1

Zπ0

∆F (x − y ,Mπ)

∆F (x − z,Mπ)∆F (z ′ − y ,Mπ)



RBC-UKQCD: long-distance contribution to HLbL in g − 2 in position

space from π0-pole (talk by Norman Christ) (cont.)

HLbL-UConn - 3/13/2018

Lattice implementation

(8)

• For |x − y | ≥ Rmin replace Aµµ′νν′ (x , x ′, y , y ′) with Aπ0

µµ′νν′ (x , x
′, y , y ′) to use

the π0 contribution at long distances.

• Should allow the large volume systematic error to be reduced.

• No explicit implementation by time of UConn meeting.



RBC-UKQCD: Pion transition form factor from lattice QCD in position
space (talk by Cheng Tu)

TFF in momentum space:∫
d4u e−iq1·u−iq2·v 〈0|T {iJµ(u) iJν(v)} |π0(p)〉 =

i

4π2Fπ
εµνρσq1,ρq2,σF (q2

1 , q
2
2)

In position space:

〈0|T {iJµ(u) iJν(v)} |π0(p)〉 =
i

4π2Fπ
εµνρσ

∫ 1

0
dx
[
−∂uρFc (x , (u − v)2)

]
ipσe

ip·(xu+(1−x)v)

Fc (x , (u − v)2) = 0 if x < 0 or x > 1

For v = 0, p = q1 + q2 we get the following mapping:

F (q2
1 , q

2
2) =

∫
d4u e−iq1·u

∫ ∞
0

dx Fc (x , u2) e ixp·u

In chiral limit and for ~p = 0, q1 = 0 and using the normalization
F (q2

1 → 0, q2
2 → 0) = 1 we have:∫

d4u

∫ 1

0
dx Fc (x , u2) = 1

Fc (x , (u − v)2): extract leading singular behavior from OPE when u → v (Gérardin et
al. ’16) and write remaining regular dependence on |u − v | in Fourier series in
0 ≤ x ≤ 1 (maybe better to use expansion in Gegenbauer polynomials, cf. pion
distribution amplitude (Luchang Jin (private communication), see Bali et al. ’17)):

−∂uρFc (x , (u − v)2) = 2(u − v)ρ

[
F 2
π

3

1

((u − v)2)2

] ∞∑
n=0

fn(|u − v |) (2n + 1)π

2
sin((2n+1)πx)



RBC-UKQCD: Pion transition form factor from lattice QCD in position
space (talk by Cheng Tu)

Study r dependence of position-space function, define f (|r |):∫ 1

0
dx
[
−∂uρFc (x , r2)

]
= 2rρ

[
F 2
π

3

1

(r2)2

]
f (|r |), f (|r |) =

∞∑
n=0

fn(|r |)

〈0|T { iJµ(0,~r/2) iJν(0,−~r/2)} |π0(~p = 0)〉 =
i

4π2Fπ
εµνρσ2rρipσ

[
F 2
π

3

1

(r2)2

]
f (|r |)

Resent Results Plots

Plots

24c64 Lattice, 1024 Point Source Propagator
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Resent Results Plots
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Fitting Formular: f (r) = (c0 + c2r2)e−0.77r , and the fitted parameters are:
c0 = 0.9871± 0.2258
c2 = 1.9816± 0.0430
based on 24c lattice, 16 configurations.
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Result for integral with fitted function:

π2

2

∫ ∞
0

F 2
π

3
ffit(r)2rdr = 0.9965± 0.017 (normalization consistent with 1)



Conclusions, Tasks for Mainz workshop

Conclusions

• Lot of progress on conceptual and
technical side achieved for HLbL
on the lattice in last 3-4 years by
RBC-UKQCD and Mainz group.

• RBC-UKQCD: Many results
already obtained at physical pion
mass, finite lattice spacing, finite
volume, fully connected and
leading disconnected diagrams.

• Mainz: semi-analytical approach
for QED kernel in continuum and
infinite volume (QED∞) to have
full control over non-QCD part of
HLbL. First results for QCD
calculation of fully connected
diagram (next talk by Nils
Asmussen).

• Observed by both groups:
Importance to better understand
pion-pole contribution by direct
lattice calculation of transition
form factor or directly in 4-point
function to control finite-volume
and long-distance effects.

Tasks for Mainz workshop

(From final discussion at UConn, Christoph Lehner)



Outlook

Timeframes: End of 2018 (Whitepaper) and final result by Fermilab g − 2 experiment
in 2-3 years

• RBC-UKQCD: first number for aHLbL
µ with physical pion mass, extrapolated to

continuum and infinite volume, with some control over systematics seems very
likely by end of 2018 (Whitepaper).

• Mainz: try to cross-check these numbers, at least for fully connected
contribution and extrapolated to physical pion mass, with completely different
approach and different lattice action.

• More consolidated number of aHLbL
µ with 10% uncertainty (with controlled

systematics by both collaborations and hopefully other lattice groups !) seems
within reach by the time the Fermilab experiment publishes its final result.


