
Fermilab Measurement of Muon g-2

Dave Kawall, University of Massachusetts Amherst, on behalf of the Muon g-2 Collaboration

Goal: Measure the muon anomalous magnetic moment aµ to 140 ppb, a fourfold
improvement over the 540 ppb precision of Brookhaven
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Muon g-2 experiment collaboration
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Thanks to Everyone for your Effort!

• All here to improve SM Prediction and Measurement of aµ

•Wouldn’t be here except for rare combination of circumstances:

(1) We can measure aµ really well

(2) You can predict aµ really well

(3) The comparison can change future direction of physics

• 3.5 σ discrepancy on aµ large compared to EW contribution: 27× 10−10 vs 15.36× 10−10

• Great challenge for physics! Thanks for your efforts!
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Overview of the Measurement Technique

• 14 meter radius, 650 tons Penning trap for 3.1 GeV muons

• Radial confinement: 1.45 T B field; vertical confinement: electric quadrupoles

• Superconducting inflector to inject muons in ring

• Pulsed magnetic kickers put muons on stored orbit
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Overview of the Idealized Measurement Technique

• Inject polarized muons into magnetic storage ring 1.45 T

~ωcyclotron =
e

γm
~B ≈ 2π × 6.7 MHz

~ωspin = g
e

2m
~B − (1− γ)

e

γm
~B ≈ 2π × 6.9 MHz

~ωa ≡ ~ωs − ~ωc =

(
g − 2

2

)[ e
m
~B
]

⇒ ~ωa = aµ

[ e
m
~B
]
≈ 229 kHz

• Difference between spin and cyclotron frequencies: ωa proportional to aµ

• Difference sensitive to aµ ≈ 0.00116..., not gµ ≈ 2.00232...

⇒ Experiment measures two quantities:

(1) Muon anomalous precession frequency ωa to ± 100 ppb (stat) ± 70 ppb (syst)

(2) Magnetic field ~B in terms of proton NMR frequency ωp to ± 70 ppb (syst)
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Overview of the Less-Idealized Measurement Technique

• Inject polarized muons into magnetic storage ring
with electric vertical focusing

•Muon cyclotron frequency ωc ≈ 2π × 6.7 MHz

•Muon spin vector precession ωs ≈ 2π × 6.9 MHz

~ωa = ~ωS − ~ωC

~ωa ≈
e

mc

[
aµ ~B −

(
aµ −

[
mc

p

]2)
~β × ~E

]
~ωa ≈ 229 kHz

⇒ Cancel term from electrostatic vertical focusing at pmagic =
mc
√
aµ
≈ 3.094 GeV/c

⇒ Experiment measures two quantities:

(1) Muon anomalous precession frequency ωa to ± 100 ppb (stat) ± 70 ppb (syst)

(2) Magnetic field ~B in terms of proton NMR frequency ωp to ± 70 ppb (syst)
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Why Fermilab? Statistics!

⇒ Brookhaven statistics limited:

aBNLµ = 0.001 165 920 89 (54)stat (33)sys

• BNL ±540 ppb uncertainty on aµ,

9× 109 events

⇒ Fermilab goal 2× 1011, factor 21

Fermilab Advantages:

• Long decay channel for π ⇒ µ

• Reduced π and p in ring

• Factor 20 reduction in hadronic flash

⇒ 4× higher fill frequency than BNL

• Muons per fill about the same

⇒ 21 times more detected e+, 2× 1011
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From Brookhaven to Fermilab

• 650 ton magnet disassembled, put on trucks to Fermilab, coils went by barge down Atlantic
coast, up Mississippi in 2013
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From Brookhaven to Fermilab

• Closed two interstates near Chicago to transport coils to Fermilab

• Coils pass toll arches with 6” clearance on each side
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Magnet Reassembly at Fermilab June 2014 - June 2015
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How do we get muons into the ring? Superconducting Inflector
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Storing the Muon Beam: The Fast Muon Kicker

•Muons enter 77 mm outside ideal closed orbit with radius 7112 mm

•Muons cross ideal orbit at 90◦, angle off by 77 mm/7112 mm ≈ 11 mrads

⇒ Reduce B by ≈ 300 Gauss over 4 metres for 149 ns at 100 Hz, 10% homogeneity

• Kicker steers muons onto stored orbit with ≈ 50 kV, 5000 Amp pulse
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Storing the Muon Beam: Vertical Focusing Electric Quadrupoles

• Use electric quadrupoles for linear restoring force in vertical

• Uniform quadrupole field leads to simple harmonic motion about closed orbit

x = xe + Ax cos

(
νx

s

R0
+ δx

)
, y = Ay cos

(
νy
s

R0
+ δy

)
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Measuring ωa: Detecting the e+ from muon decay with calorimeters

⇒Muon Rest Frame: highest energy decay e+ emitted in muon spin direction, rotates around

⇒ Lab Frame Positron Energy: Elab ≈ γE∗ [1 + cos (ωat)]

⇒ Positron detection rate above threshold ∝ cos (ωat)

• 24 calorimeters of 9× 6 PbF2 crystals + SiPMs detect e+ from µ decay,

• Digitize at 800 MSPS 12 bits for 700 µs, timing resolution 25 ps, gain stability 10−4

• Reconstruct e+ energy and time ⇔ extrapolate for phase of µ+ spin at decay
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Overview of Storage Ring Magnetic Field and its Measurement: ωp

ωa ≈ aµ

[
eB

mµ

]
•Want aµ ⇒ need to measure ωa and eB/mµ

•Measure B in terms of equivalent free proton precession frequency ωp using proton

NMR: ~ωp = 2µp| ~B|

aµ =
ωa
ωp

2µp
~
mµ

e
=

ωa
ωp

µp
µe

mµ

me

ge
2

⇒ Experiment must measure ratio of two frequencies: ωa/ωp

• Other ratios known to 22 ppb precision or better (but some subtleties involved!)

• ωp ≈ 2π × 61.79 MHz when B = 1.45 T

•Magnetic field team measures ωp to 70 ppb
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Storage Ring Magnetic Field Homogeneity

•Muons occupy volume determined by vertical and radial B fields, betatron oscillations

•Muon spin precesses according to B in small volume

• Need B field weighted by stored muon distribution ⇒ ω̃p

• Reasons for homogeneous field:

• Stable beam dynamics, adiabaticity

• Smaller uncertainty on ω̃p from convolution of muon distribution with field

• Easier to measure
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Storage Ring Magnet: Centerpiece of the Experiment

• 682 tons, 4 coils×24 windings×5200 Amps/winding, 72 poles, B=1.4513 T

• B×gap ≈ µ0I ⇒ 1.45 T× 0.2 m ≈ 4π × 10−7 × 48× 5200 Amps,
∆B

B
≈ −∆gap

gap

• Oct 2015-Aug 2016: adjustments of pole gaps, tilts, 8000+ fine iron laminations

• B uniformity at ± 15 ppm level (RMS) ⇔ gap uniform at 2.7 micron level over 45 m!
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Fermilab Goal: Measurement of B-Field to 70 ppb using Pulsed Proton NMR

⇒Want precession frequency of free protons ωp in storage volume while muons stored
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Fermilab Goal: Measurement of B-Field to 70 ppb using Pulsed Proton NMR

⇒Want precession frequency of free protons ωp in storage volume while muons stored

• Can’t have NMR magnetometer probes in storage volume at same time/place as muons!
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Fermilab Goal: Measurement of B-Field to 70 ppb using Pulsed Proton NMR

⇒Want precession frequency of free protons ωp in storage volume while muons stored

• Can’t have NMR probes in storage volume at same time/place as muons!

•Whatever we use to measure B-field perturbs the local field!
⇒ measured B-field different than what muons see!

• Calibration/corrections necessary to go from magnetometer measurements to free proton
ωp
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Fermilab Goal: Measurement of B-Field to 70 ppb using Pulsed Proton NMR

• 387 Fixed NMR probes outside storage volume measure field while muons stored

• Field inside storage volume measured by NMR trolley periodically

• Fixed probes calibrated when trolley passes; can infer field inside storage volume

Electronics, 
Microcontroller,  
Communication 

Position of NMR 
probes 

Fixed probes on vacuum chambers Trolley with matrix of 17 NMR probes 
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Field Measurement with Pulsed NMR

⇐ Free induction decay (FID) and
Fourier transform

• Signal : noise ≥ 200 : 1

• Frequency resolution
≈ linewidth / [S/N ]
≈ 120 Hz / 200 = 0.6 Hz

• Resolution of field measurement in single NMR pulse:

δB

B
≈ δfNMR

fNMR
≈ 0.6 Hz

61.79 MHz
≈ 10 ppb

• All ≈ 400 probe read out every 1.7 seconds

• Corrections necessary to get from fNMR of NMR magnetometers to ωp of free proton
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How do we go from NMR probe precession frequencies to ωp

ωprobe
p =

[
1

]
ωfree
p

⇒ Determine B seen by muons from measurement of ωp of free protons
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How do we go from NMR probe precession frequencies to ωp

ωprobe
p =

[
1− σ(H2O, T )

]
ωfree
p

⇒ Determine B seen by muons from measurement of ωp of free protons

• Complication: protons in H2O molecules, diamagnetism of electrons screens protons,
changes local B

• σ(H2O, T ) = 25 680(±2.5)× 10−9 at 25.0◦C (Y. Neronov and N. Seregin, Metrologia 51, 54 (2014))
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How do we go from NMR probe precession frequencies to ωp

ωprobe
p =

[
1− σ(H2O, T ) −

(
ε− 4π

3

)
χH20(T )

]
ωfree
p

⇒ Determine B seen by muons from measurement of ωp of free protons

• Complication: protons in H2O molecules, diamagnetism of electrons screens protons,
changes local B

• σ(H2O, T ) = 25 680(±2.5)× 10−9 at 25.0◦C (Y. Neronov and N. Seregin, Metrologia 51, 54 (2014))

• Complication: Magnetization of water sample gives shape-dependent field perturbation:
ε = 4π/3 for a sphere, ε = 2π for cylinder⊥ ~B
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How do we go from NMR probe precession frequencies to ωp

ωprobe
p =

[
1− σ(H2O, T ) −

(
ε− 4π

3

)
χH20(T ) − δprobe

]
ωfree
p

⇒ Determine B seen by muons from measurement of ωp of free protons

• Complication: protons in H2O molecules, diamagnetism of electrons screens protons,
changes local B

• σ(H2O, T ) = 25 680(±2.5)× 10−9 at 25.0◦C (Y. Neronov and N. Seregin, Metrologia 51, 54 (2014))

• Complication: Magnetization of water sample gives shape-dependent field perturbation:
ε = 4π/3 for a sphere, ε = 2π for cylinder⊥ ~B

• Complication: Magnetization of probe materials perturbs field at protons

⇒ Need special NMR electronics and probes to determine corrections to 35 ppb accuracy
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Corrections to ωa: Pitch and Electric Field Correction

• Corrections to ωa determined by calorimeter required because:

(1) Not all muons at magic momentum ⇒ not on center orbit ⇒ see net electric field

(2) Vertical betatron motion: muons pitching up/down out of horizontal plane

~ωa ≈ ~ωS − ~ωC = − e
m

[
aµ ~B︸ ︷︷ ︸

What we want

− aµ
(

γ

γ + 1

)(
~β · ~B

)
~β︸ ︷︷ ︸

Pitch Correction

−
(
aµ −

1

γ2 − 1

) ~β × ~E

c

]
︸ ︷︷ ︸

E-Field Correction

• E-field correction needs momentum distribution: from fast-rotation (de-bunching) analysis,
straw tracking chambers, muon beam fiber monitors

• For BNL: electric field correction ≈ +0.47± 0.05 ppm

• Pitch correction: needs muon distribution: from straw tracking chambers

• For BNL: pitch correction ≈ +0.27± 0.04 ppm

Corrections verified from detailed spin tracking analysis using complete relativistic equa-
tions, actual discontinuous quad geometry, actual magnetic field distributions, ...
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Measuring Stored Muon Distribution with Straw Tracker Chambers

• Two sets of straw trackers: exquisite measurement of stored muon distribution

• Important for optimizing injection parameters

• Required for electric field and pitch corrections, convolution with magnetic field

• Center of mass of muon distribution currently above ideal value
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Systematic Uncertainty Goals on B Field Measurement ωp

• Implemented new electronics, new probes, new techniques reduce uncertainties factor 2.5

•Main issue: magnet not currently insulated, field not as stable as we’d like (1◦C change
⇒ 35 ppm !)
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Systematic Uncertainty Goals on Muon Precession Measurement ωa

• Implemented new calorimeters, trackers, new techniques to reduce uncertainties factor 2.6

•Main issues: muons underkicked, momentum of stored muon above pmagic, fixes planned

• Stored muon flux below design value, fixed planned
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Progress in 2018: The Wiggle Plot

e+ Signal from Muon Decay: Nideal(t) = N0 exp (−t/γτµ) [1− A cos (ωat + φ)]

• Data from 60 hour period, ωp offline analysis very advanced

• Corrections for pileup, muon losses, CBO effects, long-term gain changes

Fermilab Measurement of Muon g-2, D. Kawall g-2 Theory Initiative Workshop in Mainz, June 18-22, 2018 31



Progress in 2018: Accumulating Statistics

• Have data set comparable to BNL statistics !

• Cuts on data quality (still to come) will reduce analyzable data set
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The Path to Statistical Uncertainty Goals of 100 ppb

Fermilab Measurement of Muon g-2, D. Kawall g-2 Theory Initiative Workshop in Mainz, June 18-22, 2018 33



Summary and Thanks to Everyone Here

•Muon g-2 persists as interesting result: highly cited, community paying attention

• Significant progress by experiment:

⇒ First muons stored in June 2017

⇒ Result from 1st physics run with BNL level statistics by late 2018/early 2019?

⇒ Full statistics on µ+ ≈ 2020, four-fold reduction in uncertainty to 140 ppb

• Theory community has made remarkable progress!

⇒ Uncertainties projected in 2013 for final result already achieved!

⇒ Remarkable progress on hadronic uncertainties, lattice

Your effort and improvements are what makes all of this interesting. Thank You!

Work supported by U.S. Department of Energy Office of Science
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Event rate estimates at Fermilab
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Calibration NMR Probe Testing at MRI Solenoid at Argonne

• Signal/Noise > 1500

• Linewidths of few Hz

• Frequency resolution <100
ppt

• Easily see effects at ppb level
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Coherent Betatron Oscillations (CBO)

• Detector acceptance depends on muon radius at decay - coherent radial motion modulates electron time

spectrum

• Radial betatron wavelength (blue line) is longer than circumference (cyclotron wavelength), fx < fC

• At fixed detector location, each pass of bunched beam appears at different radius - moving at fCBO

• CBO frequency fCBO = fC − fx must be kept far from fa

• Cyclotron wavelength marked by black lines, single detector by black block, betatron oscillations in blue

• Red line: apparent radial breathing in and out of beam at fCBO

• Effect nearly cancels when all detectors added together
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Coherent Betatron Oscillations (CBO)

• BNL data taken in 2000 when CBO frequency close to fa - can be seen in residual to 5
parameter fit

• In 2001, field index n changed to move fCBO away from fa
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Progress in shimming the storage ring magnet to ± 25 ppm

• Field nearly 3 times more homogeneous than BNL: easier to measure, smaller systematics

• Final shimming with surface coils will reduce remaining inhomogeneity
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