Fermilab Measurement of Muon g-2

Dave Kawall, University of Massachusetts Amherst, on behalf of the Muon g-2 Collaboration

Goal: Measure the muon anomalous magnetic moment a, to 140 ppb, a fourfold
improvement over the 540 ppb precision of Brookhaven
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Thanks to Everyone for your Effort!
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e All here to improve SM Prediction and Measurement of a,,
e Wouldn't be here except for rare combination of circumstances:

(1) We can measure a,, really well
(2) You can predict a,, really well
(3) The comparison can change future direction of physics

e 3.5 o discrepancy on a,, large compared to EW contribution: 27 x 10719 vs 15.36 x 1071

e Great challenge for physics! Thanks for your efforts!
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Overview of the Measurement Technique

Pions decay. Muons injected using superconducting

Overview of the g-2 experiment | collectforward, inflector into 14 m diameter magnetic
polarized muons storage ring operating at 1.45 Tesla. Pulsed

at 3.1 GeVlc magnet kicks muons on to stable orbit.
. J 9] / " After each circuit,
_‘ < R muon momentum
. L D J 9 vector rotates by
Hit Ni -/ D 3600, spin vector
Target ( rotates 3729,
: additional 12°from
Bunch with 1012 ::’::3 cil:l":ith where it was on its
protons at 8 GeV lithium lens previous circuit
from Booster into beamline around the ring.
One of the 24 calorimeters
-Muons confined vertically by detects positron. Cutting on Typical muon circles ring 400 times
electrostatic quadrupoles high energy e* in lab frame before decaying to a positron (plus
-Penning trap like electron g-2 selects muons with spin neutrinos). In rest frame, the most
except 14 meters, 650 tons ’ direction along momentum. energetic e* emitted in direction of

Rate will oscillate. the muon spin.

e 14 meter radius, 650 tons Penning trap for 3.1 GeV muons
e Radial confinement: 1.45 T B field; vertical confinement: electric quadrupoles
e Superconducting inflector to inject muons in ring

e Pulsed magnetic kickers put muons on stored orbit
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Overview of the Idealized Measurement Technique
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e Difference between spin and cyclotron frequencies: w, proportional to a,

e Difference sensitive to a, ~ 0.00116..., not g, ~ 2.00232...

P
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e Inject polarized muons into magnetic storage ring 1.45 T 7 N
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— Experiment measures two quantities:

(1) Muon anomalous precession frequency w, to £ 100 ppb (stat) £ 70 ppb (syst)
(2) Magnetic field B in terms of proton NMR frequency w, to £ 70 ppb (syst)
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Overview of the Less-Idealized Measurement Technique

§—
e Inject polarized muons into magnetic storage ring 7 N
with electric vertical focusing
e Muon cyclotron frequency w. ~ 27 x 6.7 MHz Q /
e Muon spin vector precession w; ~ 21 X 6.9 MHz —
g_.
We = Wg — W
“ e mel?\ = “ N\
g = — |a,B—a,— |—| |BXE
e p | |
W, ~ 229kHz N\ %
mc
= Cancel term from electrostatic vertical focusing at ppagic = —— =~ 3.094 GeV/c

NGH

— Experiment measures two quantities:

(1) Muon anomalous precession frequency w, to + 100 ppb (stat) 4 70 ppb (syst)
(2) Magpnetic field B in terms of proton NMR frequency w, to =70 ppb (syst)
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Why Fermilab? Statistics!

— Brookhaven statistics limited: . o Recycler Ring
a;™ = 0.001165 920 89 (54)stat (33)sys ‘ '

e BNL £540 ppb uncertainty on a,,
9 x 107 events

— Fermilab goal 2 x 10!, factor 21

Fermilab Advantages:

e Long decay channel for 7 = u

e Reduced 7 and p in ring

e Factor 20 reduction in hadronic flash
= 4x higher fill frequency than BNL

e Muons per fill about the same

— 21 times more detected e™, 2 x 10!

10 ms 197 ms

Cycle length 1.4 sec

Booster -ﬂ._ 9
% T s Muon Campus
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From Brookhaven to Fermilab

e 650 ton magnet disassembled, put on trucks to Fermilab, coils went by barge down Atlantic
coast, up Mississippi in 2013
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From Brookhaven to Fermilab
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e Closed two interstates near Chicago to transport coils to Fermilab

e Coils pass toll arches with 6" clearance on each side
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Magnet Reassembly at Fermilab June 2014 - June 2015
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How do we get muons into the ring? Superconducting Inflector

Inflector
Injected Cryostat
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pred NMR R
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muon beam

e Cancel 1.45 T field inside channel

e Prevents strong deflection of beam

e Minimal perturbation of field in
muon storage volume

Helium Channel
(for cooling)

Beam
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Storing the Muon Beam: The Fast Muon Kicker

e Muons enter 77 mm outside ideal closed orbit with radius 7112 mm
e Muons cross ideal orbit at 90°, angle off by 77 mm /7112 mm = 11 mrads

— Reduce B by =~ 300 Gauss over 4 metres for 149 ns at 100 Hz, 10% homogeneity
e Kicker steers muons onto stored orbit with =~ 50 kV, 5000 Amp pulse
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Storing the Muon Beam: Vertical Focusing Electric Quadrupoles

e Use electric quadrupoles for linear restoring force in vertical

e Uniform quadrupole field leads to simple harmonic motion about closed orbit
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Measuring w,: Detecting the e™ from muon decay with calorimeters

Decay e+

Top down view of ring section

/

Calorimeters

\'\1

Tracker

\

— Muon Rest Frame: highest energy decay e emitted in muon spin direction, rotates around
= Lab Frame Positron Energy: Ej., = YE* [1 4 cos (wqt)]
= Positron detection rate above threshold o< cos (w,t)

e 24 calorimeters of 9 x 6 PbF, crystals + SiPMs detect et from 1 decay,

e Digitize at 800 MSPS 12 bits for 700 ys, timing resolution 25 ps, gain stability 10~*

2000}

ADC counts

1500

1000;
deltat: 9.8 ns
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Overview of Storage Ring Magnetic Field and its Measurement: w,

wa ~ alu -
m
H

e Want a, = need to measure w, and eB/m,,

e Measure B in terms of equivalent free proton precession frequency w, using proton
NMR: fw, = 2u,|B|

0 — Wa 20ty My,  Wa Up Ty Ge
y = _ Je
w, h e Wy fle Me 2

= Experiment must measure ratio of two frequencies: w,/w,
e Other ratios known to 22 ppb precision or better (but some subtleties involved!)

o w,~ 2w X 61.79 MHz when B=1.45 T

e Magnetic field team measures w, to 70 ppb
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Storage Ring Magnetic Field Homogeneity

e Muons occupy volume determined by vertical and radial B fields, betatron oscillations

e Muon spin precesses according to B in small volume
e Need B field weighted by stored muon distribution = @,
e Reasons for homogeneous field:

e Stable beam dynamics, adiabaticity
e Smaller uncertainty on w, from convolution of muon distribution with field

e Easier to measure
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Storage Ring Magnet: Centerpiece of the Experiment
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g-2 Magnet in Cross Section

e 632 tons, 4 coilsx24 windingsx5200 Amps/winding, 72 poles, B=1.4513 T
AB A
® Bxgap ~ fiol = 145 Tx 0.2m a dm x 1077 x 48 x 5200 Amps, —= ~ — 5P
gap
e Oct 2015-Aug 2016: adjustments of pole gaps, tilts, 80004 fine iron laminations

e B uniformity at + 15 ppm level (RMS) < gap uniform at 2.7 micron level over 45 m!
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Fermilab Goal: Measurement of B-Field to 70 ppb using Pulsed Proton NMR

= Want precession frequency of free protons w, in storage volume while muons stored
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Fermilab Goal: Measurement of B-Field to 70 ppb using Pulsed Proton NMR

= Want precession frequency of free protons w, in storage volume while muons stored

e Can't have NMR magnetometer probes in storage volume at same time/place as muons!
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Fermilab Goal: Measurement of B-Field to 70 ppb using Pulsed Proton NMR

= Want precession frequency of free protons w, in storage volume while muons stored
e Can't have NMR probes in storage volume at same time/place as muons!

e Whatever we use to measure B-field perturbs the local field!
— measured B-field different than what muons see!

° Calibration/corrections necessary to go from magnetometer measurements to free proton
Wp
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Fermilab Goal: Measurement of B-Field to 70 ppb using Pulsed Proton NMR

e 387 Fixed NMR probes outside storage volume measure field while muons stored
e Field inside storage volume measured by NMR trolley periodically

e Fixed probes calibrated when trolley passes; can infer field inside storage volume

aluminum Lg petroleum jelly aluminum l
_E I— 7 ' T o - L 8 mm
//'—.. 3 e B w—— | p——
c;ble “p teflon Cs {
100 mm
Fixed probes on vacuum chambers Trolley with matrix of 17 NMR probes

Electronics,
I Microcontroller, I Position of NMR
| Communication | probes
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Field Measurement with Pulsed NMR
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< Free induction decay (FID) and

Fourier transform
e Signal : noise > 200 : 1
e Frequency resolution
linewidth / [S/N]|
120 Hz / 200 = 0.6 Hz

Q &

e Resolution of field measurement in single NMR pulse:

o All

e Corrections necessary to get from fxyr of NMR magnetometers to w), of free proton

0B Jfxmr

0.6 Hz

B " faur

~ 10 ppb

61.79 MHz
~ 400 probe read out every 1.7 seconds
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How do we go from NMR probe precession frequencies to w,

<3 <S—
™ U
probe free
W, = |1 Wy,

— Determine B seen by muons from measurement of w, of free protons
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How do we go from NMR probe precession frequencies to w,

W, 4 B W, 4 B ?
= <> »
L
u
My i | Uhz20
wgr(’be = |1 —0(HO,T) w]ffee

— Determine B seen by muons from measurement of w, of free protons

e Complication: protons in HyO molecules, diamagnetism of electrons screens protons,
changes local B

e 0(HyO,T) = 25680(£2.5) x 10~ at 25.0°C (Y. Neronov and N. Seregin, Metrologia 51, 54 (2014))
(H20,
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How do we go from NMR probe precession frequencies to w,

W, 4B w,4B ?
<: ‘: ’ ‘ RS Lo 1] ras i N O U RN Y
’ FINCIIINCIINESTINER,
My o | Muz20
probe dm free
wy, = [1—0(HO0,T) — | e— 5 Xi,0(1") Wy,

— Determine B seen by muons from measurement of w, of free protons

e Complication: protons in HyO molecules, diamagnetism of electrons screens protons,
changes local B

e 0(HyO.T) = 25680(%£2.5) X 107 at 25.0°C (Y. Neronov and N. Seregin, Metrologia 51, 54 (2014
(H20, ( (2014))

e Complication: Magnetization of water sample gives shape-dependent field perturbation:
€ = 47 /3 for a sphere, € = 27 for cylinder |, B
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How do we go from NMR probe precession frequencies to w,

4

w}}))robe — []_ — O'(HQO,T> — (6 — ?) XH20<T> _ 5pr0be] w]fjree

— Determine B seen by muons from measurement of w, of free protons

e Complication: protons in HyO molecules, diamagnetism of electrons screens protons,
changes local B

e 0(HyO.T) = 25680(%£2.5) X 107 at 25.0°C (Y. Neronov and N. Seregin, Metrologia 51, 54 (2014
(H20, ( (2014))

e Complication: Magnetization of water sample gives shape-dependent field perturbation:
€ = 47 /3 for a sphere, € = 27 for cylinder |, B

e Complication: Magnetization of probe materials perturbs field at protons

= Need special NMR electronics and probes to determine corrections to 35 ppb accuracy
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Corrections to w,: Pitch and Electric Field Correction

e Corrections to w, determined by calorimeter required because:

(1) Not all muons at magic momentum =- not on center orbit = see net electric field
(2) Vertical betatron motion: muons pitching up/down out of horizontal plane

L L e = ~ LN o 1 \AxE
Wy, ~ Wg — Wo = _E{%B _au(ﬁ> (5'3)5_(%_72_1) p

TV \ . 7
What we want Pitch Correction E-Field Correction

\

e E-field correction needs momentum distribution: from fast-rotation (de-bunching) analysis,
straw tracking chambers, muon beam fiber monitors

e For BNL: electric field correction ~ 40.47 £ 0.05 ppm

e Pitch correction: needs muon distribution: from straw tracking chambers

e For BNL: pitch correction ~ +0.27 £ 0.04 ppm

Corrections verified from detailed spin tracking analysis using complete relativistic equa-
tions, actual discontinuous quad geometry, actual magnetic field distributions, ...
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Measuring Stored Muon Distribution with Straw Tracker Chambers

Muons -eye view |n5|de vacuum chamber
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Top down view of ring section
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e Two sets of straw trackers: exquisite measurement of stored muon distribution
e Important for optimizing injection parameters
e Required for electric field and pitch corrections, convolution with magnetic field

e Center of mass of muon distribution currently above ideal value
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Systematic Uncertainty Goals on B Field Measurement w,

Source of uncertainty 1999 2000 2001 E989
Systematics of calibration probes 50 50 50 w=mp 35
Calibration of trolley probes 200 150 90 ===p 3()
Trolley measurements of 3 100 100 50 w===p 30
Interpolation with fixed probes 150 100 70 w30
Uncertainty from muon distribution 120 30 30 ==p [0
Inflector fringe field uncertainty 200 - = -
Time dependent external B fields - — —~ ) 5
Others T 150 100 100 w=p 30
Total systematic error on w), 400 240 170 == 7()

Muon-averaged field [Hz]: wp/27r 61 791 256 61791595 61 791 400 -

e Implemented new electronics, new probes, new techniques reduce uncertainties factor 2.5

e Main issue: magnet not currently insulated, field not as stable as we'd like (1°C change
= 35 ppm !)
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Systematic Uncertainty Goals on Muon Precession Measurement w,

Category E821 | E989 Improvement Plans Goal
[ppb] [ppb]

Gain changes 120 | Better laser calibration

low-energy threshold 20
Pileup 80 | Low-energy samples recorded

calorimeter segmentation 40
Lost muons 90 | Better collimation in ring 20
CBO 70 | Higher n value (frequency)

Better match of beamline to ring | < 30
FE and pitch 50 | Improved tracker

Precise storage ring simulations 30
Total 180 | Quadrature sum 70

e Implemented new calorimeters, trackers, new techniques to reduce uncertainties factor 2.6

e Main issues: muons underkicked, momentum of stored muon above py,agic, fixes planned

e Stored muon flux below design value, fixed planned

Fermilab Measurement of Muon g-2, D. Kawall
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Progress in 2018: The Wiggle Plot

Hello! I'm a wiggle plot.
R =-38.33 = 1.17 ppm
v2/ NDF = 3821 /3793
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e™ Signal from Muon Decay: Nigeal(t) = Noexp (—t/v7,) [1 — Acos (wut + ¢)]

e Data from 60 hour period, w, offline analysis very advanced

e Corrections for pileup, muon losses, CBO effects, long-term gain changes
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Progress in 2018: Accumulating Statistics
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e Have data set comparable to BNL statistics !

e Cuts on data quality (still to come) will reduce analyzable data set
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The Path to Statistical Uncertainty Goals of 100 ppb

TDR Goal- - - — - — — — -
20 L
-5 Run period 15-Oct to 7-July (14 week summer break) - ’
Z 15|  Study shifts: 25% L/ w
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Current Rate
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Summary and Thanks to Everyone Here

e Muon g-2 persists as interesting result: highly cited, community paying attention

e Significant progress by experiment:

= First muons stored in June 2017
= Result from 1st physics run with BNL level statistics by late 2018 /early 20197
— Full statistics on u* = 2020, four-fold reduction in uncertainty to 140 ppb

e Theory community has made remarkable progress!

= Uncertainties projected in 2013 for final result already achieved!

= Remarkable progress on hadronic uncertainties, lattice

Your effort and improvements are what makes all of this interesting. Thank You! |

SR, U.S. DEPARTMENT OF Office of

Work supported by U.S. Department of Energy Office of Science @ ENERGY  scence
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Event rate estimates at Fermilab

4 4 1

Item Factor Value per fill
Protons on target 102 p
Positive pions captured in FODO, ép/p = +0.5% 1.2 x 107 1.2 x 108
Muons captured and transmitted to SR, dp/p = +2% 0.67% 8.1 x 10°
Transmission efficiency after commissioning 90% 7.3 x 10°
Transmission and capture in SR (2.5+0.5)% 1.8 x 104
Stored muons after scraping 87% 1.6 x 10*
Stored muons after 30 us 63% 1.0 x 10*
Accepted positrons above E = 1.86 GeV 10.7% 1.1 x 10°
Fills to acquire 1.6 x 10! events (100 ppb) 1.5 x 108
Days of good data accumulation 17 h/d 202 d
Beam-on commissioning days 150 d
Dedicated systematic studies days 50 d
Approximate running time 402 £ 80 d

Approximate total proton on target request

(3.0 £ 0.6) x 10%

Fermilab Measurement of Muon g-2, D. Kawall
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Calibration NMR Probe Testing at MRI Solenoid at Argonne
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e Signal /Noise > 1500
e Linewidths of few Hz

e Frequency resolution <100
ppt

e Easily see effects at ppb level
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Coherent Betatron Oscillations (CBO)

e Detector acceptance depends on muon radius at decay - coherent radial motion modulates electron time
spectrum

e Radial betatron wavelength (blue line) is longer than circumference (cyclotron wavelength), f, < fc
e At fixed detector location, each pass of bunched beam appears at different radius - moving at fcpo
e CBO frequency fcgo = fo — f» must be kept far from f,
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e Cyclotron wavelength marked by black lines, single detector by black block, betatron oscillations in blue
e Red line: apparent radial breathing in and out of beam at fcpo

e Effect nearly cancels when all detectors added together
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Coherent Betatron Oscillations (CBO)

e BNL data taken in 2000 when CBO frequency close to f, - can be seen in residual to 5
parameter fit

e In 2001, field index n changed to move fcpo away from f,
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Progress in shimming the storage ring magnet to 425 ppm

Oct 2015 - Aug 2016 Goal
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Azimuthally Averaged Field Maps: Oct 2015 - Aug 2016
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e Field nearly 3 times more homogeneous than BNL: easier to measure, smaller systematics

e Final shimming with surface coils will reduce remaining inhomogeneity
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