Fermilab Measurement of Muon g-2

Dave Kawall, University of Massachusetts Amherst, on behalf of the Muon g-2 Collaboration

Goal: Measure the muon anomalous magnetic moment a_{μ} to 140 ppb, a fourfold improvement over the 540 ppb precision of Brookhaven

Muon q-2 experiment collaboration

Muon g-2 Collaboration

7 Countries, 34 Institutions, 185 Collaborators

Argonne National Laboratory **Boston University Brookhaven National Laboratory** Budker Institute of Nuclear Physics Lancaster University CAPP/IBS Korea **Cornell University** Fermi National Accelerator Lab INFN, Sezione di Napoli INFN, Sezione di Pisa INFN, Sezione di Roma Tor Vergata Technische Universitat Dresden University of Washington James Madison University

JINR Dubna KAIST Laboratory Nazionali di Frascati Michigan State University North Central College Northern Illinois University **Regis University** Shanghai Jiao Tong University

Universita di Molise

Universita di Udine University College London University of Illinois at Urbana-Champaign University of Kentucky University of Massachusetts Amherst University of Michigan University of Mississippi University of Texas at Austin University of Virginia

Thanks to Everyone for your Effort!

- All here to improve SM Prediction and Measurement of a_{μ}
- Wouldn't be here except for rare combination of circumstances:
- (1) We can measure a_{μ} really well
- (2) You can predict a_{μ} really well
- (3) The comparison can change future direction of physics
- 3.5 σ discrepancy on a_{μ} large compared to EW contribution: 27×10^{-10} vs 15.36×10^{-10}

• Great challenge for physics! Thanks for your efforts!

- 14 meter radius, 650 tons Penning trap for 3.1 GeV muons
- Radial confinement: 1.45 T B field; vertical confinement: electric quadrupoles
- Superconducting inflector to inject muons in ring
- Pulsed magnetic kickers put muons on stored orbit

- \Rightarrow Experiment measures two quantities:
 - (1) Muon anomalous precession frequency ω_a to ± 100 ppb (stat) ± 70 ppb (syst) (2) Magnetic field \vec{B} in terms of proton NMR frequency ω_p to ± 70 ppb (syst)

Overview of the Less-Idealized Measurement Technique

- Inject polarized muons into magnetic storage ring with electric vertical focusing
- Muon cyclotron frequency $\omega_c \approx 2\pi \times 6.7 \,\mathrm{MHz}$
- Muon spin vector precession $\omega_s~pprox~2\pi imes~6.9\,{\rm MHz}$

$$\vec{\omega}_{a} = \vec{\omega}_{S} - \vec{\omega}_{C}$$
$$\vec{\omega}_{a} \approx \frac{e}{mc} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \left[\frac{mc}{p} \right]^{2} \right) \vec{\beta} \times \vec{E} \right]$$
$$\vec{\omega}_{a} \approx 229 \, \text{kHz}$$

⇒ Cancel term from electrostatic vertical focusing at $p_{\text{magic}} = \frac{mc}{\sqrt{a_{\mu}}} \approx 3.094 \text{ GeV}/c$

 \Rightarrow Experiment measures two quantities:

- (1) Muon anomalous precession frequency ω_a to ± 100 ppb (stat) ± 70 ppb (syst)
- (2) Magnetic field \vec{B} in terms of proton NMR frequency ω_p to \pm 70 ppb (syst)

Why Fermilab? Statistics!

- ⇒ Brookhaven statistics limited: $a_{\mu}^{\text{BNL}} = 0.001\,165\,920\,89\,(54)_{\text{stat}}\,(33)_{\text{sys}}$
 - BNL ± 540 ppb uncertainty on a_{μ} , 9×10^9 events
- \Rightarrow Fermilab goal 2×10^{11} , factor 21

Fermilab Advantages:

- Long decay channel for $\pi \ \Rightarrow \mu$
- \bullet Reduced π and p in ring
- Factor 20 reduction in hadronic flash
- \Rightarrow 4× higher fill frequency than BNL
- Muons per fill about the same
- \Rightarrow 21 times more detected $e^+,~2\times10^{11}$

Cycle length 1.4 sec

 650 ton magnet disassembled, put on trucks to Fermilab, coils went by barge down Atlantic coast, up Mississippi in 2013

From Brookhaven to Fermilab

- Closed two interstates near Chicago to transport coils to Fermilab
- Coils pass toll arches with 6" clearance on each side

Magnet Reassembly at Fermilab June 2014 - June 2015

- Cancel 1.45 T field inside channel
- Prevents strong deflection of beam
- Minimal perturbation of field in muon storage volume

Storing the Muon Beam: The Fast Muon Kicker

- Muons enter 77 mm outside ideal closed orbit with radius 7112 mm
- Muons cross ideal orbit at 90° , angle off by 77 mm/7112 mm pprox 11 mrads
- \Rightarrow Reduce B by \approx 300 Gauss over 4 metres for 149 ns at 100 Hz, 10% homogeneity
 - \bullet Kicker steers muons onto stored orbit with \approx 50 kV, 5000 Amp pulse

- Use electric quadrupoles for linear restoring force in vertical
- Uniform quadrupole field leads to simple harmonic motion about closed orbit

$$x = x_e + A_x \cos\left(\nu_x \frac{s}{R_0} + \delta_x\right), \ y = A_y \cos\left(\nu_y \frac{s}{R_0} + \delta_y\right)$$

Measuring ω_a : Detecting the e^+ from muon decay with calorimeters

- \Rightarrow Muon Rest Frame: highest energy decay e^+ emitted in muon spin direction, rotates around
- \Rightarrow Lab Frame Positron Energy: $E_{\text{lab}} \approx \gamma E^* \left[1 + \cos\left(\omega_a t\right)\right]$
- \Rightarrow Positron detection rate above threshold $\propto \cos(\omega_a t)$
 - 24 calorimeters of $9 \times 6 \ {\rm PbF}_2$ crystals + SiPMs detect e^+ from μ decay,
 - Digitize at 800 MSPS 12 bits for 700 μ s, timing resolution 25 ps, gain stability 10^{-4}
 - Reconstruct e^+ energy and time \Leftrightarrow extrapolate for phase of μ^+ spin at decay

$$\omega_a \approx a_\mu \left[\frac{eB}{m_\mu}\right]$$

- Want $a_{\mu} \Rightarrow$ need to measure ω_a and eB/m_{μ}
- Measure B in terms of equivalent free proton precession frequency ω_p using proton NMR: $\hbar \omega_p = 2\mu_p |\vec{B}|$

$$a_{\mu} = \frac{\omega_a}{\omega_p} \frac{2\mu_p}{\hbar} \frac{m_{\mu}}{e} = \frac{\omega_a}{\omega_p} \frac{\mu_p}{\mu_e} \frac{m_{\mu}}{m_e} \frac{g_e}{2}$$

- \Rightarrow Experiment must measure ratio of two frequencies: ω_a/ω_p
 - Other ratios known to 22 ppb precision or better (but some subtleties involved!)
 - $\omega_p \approx 2\pi \times 61.79$ MHz when B = 1.45 T
 - Magnetic field team measures ω_p to 70 ppb

- ullet Muons occupy volume determined by vertical and radial $m{B}$ fields, betatron oscillations
- ullet Muon spin precesses according to B in small volume
- Need $m{B}$ field weighted by stored muon distribution $\Rightarrow \tilde{\omega}_p$
- Reasons for homogeneous field:
 - Stable beam dynamics, adiabaticity
 - Smaller uncertainty on $\tilde{\omega}_p$ from convolution of muon distribution with field
 - Easier to measure

Storage Ring Magnet: Centerpiece of the Experiment

- 682 tons, 4 coils×24 windings×5200 Amps/winding, 72 poles, B=1.4513 T
- B×gap $\approx \mu_0 I \Rightarrow$ 1.45 T× 0.2 m $\approx 4\pi \times 10^{-7} \times 48 \times 5200$ Amps, $\frac{\Delta B}{B} \approx -\frac{\Delta \text{gap}}{\text{gap}}$
- Oct 2015-Aug 2016: adjustments of pole gaps, tilts, 8000+ fine iron laminations
- B uniformity at \pm 15 ppm level (RMS) \Leftrightarrow gap uniform at 2.7 micron level over 45 m!

 \Rightarrow Want precession frequency of free protons ω_p in storage volume while muons stored

Fermilab Goal: Measurement of *B*-Field to 70 ppb using Pulsed Proton NMR

- \Rightarrow Want precession frequency of free protons ω_p in storage volume while muons stored
 - Can't have NMR magnetometer probes in storage volume at same time/place as muons!

- \Rightarrow Want precession frequency of free protons ω_p in storage volume while muons stored
 - Can't have NMR probes in storage volume at same time/place as muons!
 - Whatever we use to measure B-field perturbs the local field!
 ⇒ measured B-field different than what muons see!
 - Calibration/corrections necessary to go from magnetometer measurements to free proton ω_p

Fermilab Goal: Measurement of *B*-Field to 70 ppb using Pulsed Proton NMR

- 387 Fixed NMR probes outside storage volume measure field while muons stored
- Field inside storage volume measured by NMR trolley periodically
- Fixed probes calibrated when trolley passes; can infer field inside storage volume

Fixed probes on vacuum chambers

Trolley with matrix of 17 NMR probes

Field Measurement with Pulsed NMR

• Resolution of field measurement in single NMR pulse:

$$\frac{\delta B}{B} \approx \frac{\delta f_{\rm NMR}}{f_{\rm NMR}} \approx \frac{0.6 \,{\rm Hz}}{61.79 \,{\rm MHz}} \approx 10 \,{\rm ppb}$$

- \bullet All \approx 400 probe read out every 1.7 seconds
- Corrections necessary to get from $f_{
 m NMR}$ of NMR magnetometers to ω_p of free proton

 \Rightarrow Determine B seen by muons from measurement of ω_p of free protons

 \Rightarrow Determine B seen by muons from measurement of ω_p of free protons

- Complication: protons in H_2O molecules, diamagnetism of electrons screens protons, changes local B
- $\sigma(H_2O, T) = 25680(\pm 2.5) \times 10^{-9}$ at 25.0°C (Y. Neronov and N. Seregin, Metrologia 51, 54 (2014))

 \Rightarrow Determine B seen by muons from measurement of ω_p of free protons

- Complication: protons in H_2O molecules, diamagnetism of electrons screens protons, changes local B
- $\sigma(\text{H}_2\text{O}, T) = 25\,680(\pm 2.5) \times 10^{-9}$ at 25.0°C (Y. Neronov and N. Seregin, Metrologia 51, 54 (2014))
- Complication: Magnetization of water sample gives shape-dependent field perturbation: $\epsilon = 4\pi/3$ for a sphere, $\epsilon = 2\pi$ for cylinder $_{\perp} \vec{B}$

 \Rightarrow Determine B seen by muons from measurement of ω_p of free protons

- Complication: protons in H_2O molecules, diamagnetism of electrons screens protons, changes local B
- $\sigma(\text{H}_2\text{O}, T) = 25\,680(\pm 2.5) \times 10^{-9}$ at 25.0°C (Y. Neronov and N. Seregin, Metrologia 51, 54 (2014))
- Complication: Magnetization of water sample gives shape-dependent field perturbation: $\epsilon = 4\pi/3$ for a sphere, $\epsilon = 2\pi$ for cylinder $_{\perp}\vec{B}$
- Complication: Magnetization of probe materials perturbs field at protons

⇒ Need special NMR electronics and probes to determine corrections to 35 ppb accuracy

• Corrections to ω_a determined by calorimeter required because:

(1) Not all muons at magic momentum \Rightarrow not on center orbit \Rightarrow see net electric field (2) Vertical betatron motion: muons pitching up/down out of horizontal plane

$$\vec{\omega}_a \approx \vec{\omega}_S - \vec{\omega}_C = \underbrace{-\frac{e}{m} \left[a_\mu \vec{B}}_{\text{What we want}} - \underbrace{a_\mu \left(\frac{\gamma}{\gamma + 1} \right) \left(\vec{\beta} \cdot \vec{B} \right) \vec{\beta}}_{\text{Pitch Correction}} - \underbrace{\left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]}_{\text{E-Field Correction}}$$

- E-field correction needs momentum distribution: from fast-rotation (de-bunching) analysis, straw tracking chambers, muon beam fiber monitors
- For BNL: electric field correction $pprox +0.47 \pm 0.05$ ppm
- Pitch correction: needs muon distribution: from straw tracking chambers
- For BNL: pitch correction $\approx +0.27 \pm 0.04$ ppm

Corrections verified from detailed spin tracking analysis using complete relativistic equations, actual discontinuous quad geometry, actual magnetic field distributions, ...

Measuring Stored Muon Distribution with Straw Tracker Chambers

- Two sets of straw trackers: exquisite measurement of stored muon distribution
- Important for optimizing injection parameters
- Required for electric field and pitch corrections, convolution with magnetic field
- Center of mass of muon distribution currently above ideal value

Source of uncertainty	1999	2000	2001 E989
Systematics of calibration probes	50	50	50 - 35
Calibration of trolley probes	200	150	90 🗾 30
Trolley measurements of B_0	100	100	50 🗕 30
Interpolation with fixed probes	150	100	70 🗾 30
Uncertainty from muon distribution	120	30	30 🗕 10
Inflector fringe field uncertainty	200	—	
Time dependent external B fields	_	_	- <table-cell-rows> 5</table-cell-rows>
Others †	150	100	100 🗾 30
Total systematic error on ω_p	400	240	170 🗾 70
Muon-averaged field [Hz]: $\omega_p/2\pi$	$61\ 791\ 256$	61791595	61 791 400 -

- Implemented new electronics, new probes, new techniques reduce uncertainties factor 2.5
- Main issue: magnet not currently insulated, field not as stable as we'd like (1°C change \Rightarrow 35 ppm !)

	L		1
Category	E821	E989 Improvement Plans	Goal
	[ppb]		[ppb]
Gain changes	120	Better laser calibration	
		low-energy threshold	20
Pileup	80	Low-energy samples recorded	
		calorimeter segmentation	40
Lost muons	90	Better collimation in ring	20
CBO	70	Higher n value (frequency)	
		Better match of beamline to ring	< 30
E and pitch	50	Improved tracker	
		Precise storage ring simulations	30
Total	180	Quadrature sum	70

- Implemented new calorimeters, trackers, new techniques to reduce uncertainties factor 2.6
- Main issues: muons underkicked, momentum of stored muon above $p_{
 m magic}$, fixes planned
- Stored muon flux below design value, fixed planned

Progress in 2018: The Wiggle Plot

- \bullet Data from 60 hour period, ω_p offline analysis very advanced
- Corrections for pileup, muon losses, CBO effects, long-term gain changes

Progress in 2018: Accumulating Statistics

• Have data set comparable to BNL statistics !

• Cuts on data quality (still to come) will reduce analyzable data set

The Path to Statistical Uncertainty Goals of 100 ppb

- Muon g-2 persists as interesting result: highly cited, community paying attention
- Significant progress by experiment:
 - \Rightarrow First muons stored in June 2017
 - \Rightarrow Result from 1st physics run with BNL level statistics by late 2018/early 2019?
 - \Rightarrow Full statistics on $\mu^+ \approx$ 2020, four-fold reduction in uncertainty to 140 ppb
- Theory community has made remarkable progress!
 - \Rightarrow Uncertainties projected in 2013 for final result already achieved!
 - ⇒ Remarkable progress on hadronic uncertainties, lattice

Your effort and improvements are what makes all of this interesting. Thank You!

Work supported by U.S. Department of Energy Office of Science 🥨

Item	Factor	Value per fill
Protons on target		$10^{12} { m p}$
Positive pions captured in FODO, $\delta p/p = \pm 0.5\%$	1.2×10^{-4}	1.2×10^{8}
Muons captured and transmitted to SR, $\delta p/p = \pm 2\%$	0.67%	$8.1 imes 10^5$
Transmission efficiency after commissioning	90%	$7.3 imes 10^5$
Transmission and capture in SR	$(2.5\pm0.5)\%$	$1.8 imes 10^4$
Stored muons after scraping	87%	$1.6 imes 10^4$
Stored muons after 30 μ s	63%	$1.0 imes 10^4$
Accepted positrons above $E = 1.86 \text{ GeV}$	10.7%	1.1×10^3
Fills to acquire 1.6×10^{11} events (100 ppb)		$1.5 imes 10^8$
Days of good data accumulation	$17 \mathrm{h/d}$	202 d
Beam-on commissioning days		150 d
Dedicated systematic studies days		50 d
Approximate running time		$402\pm80~{\rm d}$
Approximate total proton on target request		$(3.0 \pm 0.6) \times 10^{20}$

Calibration NMR Probe Testing at MRI Solenoid at Argonne

- Detector acceptance depends on muon radius at decay coherent radial motion modulates electron time spectrum
- Radial betatron wavelength (blue line) is longer than circumference (cyclotron wavelength), $f_x < f_{
 m C}$
- ullet At fixed detector location, each pass of bunched beam appears at different radius moving at $f_{
 m CBO}$
- CBO frequency $f_{\rm CBO} = f_{\rm C} f_x$ must be kept far from f_a

• Cyclotron wavelength marked by black lines, single detector by black block, betatron oscillations in blue

- Red line: apparent radial breathing in and out of beam at $f_{
 m CBO}$
- Effect nearly cancels when all detectors added together

- BNL data taken in 2000 when CBO frequency close to f_a can be seen in residual to 5 parameter fit
- In 2001, field index n changed to move $f_{\rm CBO}$ away from f_a

Progress in shimming the storage ring magnet to $\pm\,25$ ppm

• Field nearly 3 times more homogeneous than BNL: easier to measure, smaller systematics

• Final shimming with surface coils will reduce remaining inhomogeneity