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Motivation

@ How to estimate uncertainty in the =7 channel?
— local error inflation wherever tensions between data sets arise

@ In QCD: analyticity and unitarity imply strong relation between pion form factor
and 7 scattering
— defines global fit function

@ Main motivation: Can one use these constraints to corroborate the uncertainty

estimate for the =7 channel?
@ Idea not Nnew de Trocéniz, Yndurain 2001, 2004, Leutwyler, Colangelo 2002, 2003, Ananthanarayan et al. 2013, 2016

@ Here: towards practical implementation, first numerical results

see talk at Tsukuba meeting for more details on the formalism
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Unitarity relation for the pion form factor

@ Unitarity for pion vector form factor
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< final-state theorem: phase of FY equals 7m P-wave phase &1 atson 1954
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< final-state theorem: phase of FY equals 7m P-wave phase &1 atson 1954

@ Solution in terms of Omneés function omnes 1958

s'(s' —s)

FY(s)=P(s)u(s)  Qu(s)= exp{E /oo ds’Ls/)}
T Jame

@ Asymptotics + normalization = P(s) = 1

@ In practice: inelastic corrections F)Y(s) = Gs(s)Ga(s)Q4(s)

M. Hoferichter (Institute for Nuclear Theory) HVP: 77w channel and pion form factor Mainz, June 20, 2018



Intermediate states beyond 77

@ 37 states: forbidden for my, = my, but otherwise correction factor

, Im Gs(s ) o\4
— | ~ (s —9M!
=1+ = /M2 5(s - s) m Gs(s) ~ (s — 9M3)

@ In practice: completely dominated by w pole

s Tw\2
Sw =My, —i—
w — S “ ( N 2)

Gs(s) =1+ e€pw s
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Intermediate states beyond 77

@ 37 states: forbidden for my, = my, but otherwise correction factor

,Im Gs(s') 214
—14 2 /W oo m Gs(s) ~ (s — 9M2)

@ In practice: completely dominated by w pole

s ro\?
Gs(s) =1 w Sw=|(Ms—i—
(9) =1+ e = (m.-i%)

@ 47 states: correction factor

- s [, ImGy(s’) _ 219/2
Ga(s) =1+ 7/6M2 9 s 9 Im Ga(s) ~ (s — 16M2)

@ In practice: negligible below 7w threshold Eideiman, tukaszuk 2003

p
_ SV — (0) VSrw = $1 = V/Srw — S = 2
Ga(s) = 1+i§:1 ci(z(s)'=2(0))  z(s) = Ny (Mr+M.,)

@ Inelastic phase above s-., constrained by P-wave behavior and

Eidelman—tukaszuk bound
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Parameterization of the =7 phase shift

Isospin | = 1 P-wave t; related to other =« channels by Roy equations

©

— manifestation of analyticity, unitarity, and crossing symmetry

©

Mathematical properties well understood Gasser, wanders 1999

< uniqueness properties depend on the phase shift

©

Solving ¢1 below /sm = 1.15GeV, there are two free parameters
— take d1(sm) and d1(sa), v/Sa = 0.8 GeV

©

Famlly of solutions from Caprini, Colangelo, Leutwyler 2011

— effective parameterization in terms of 61(sm) and d1(sa)

In total: 3 + p fit parameters for F/

©
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Fit to 77 data sets: strategy

@ For now: one fixed representation for FY(s), e.g. 1 free parameter in conformal

polynomial

@ For now: fix w parameters to PDG values

— 4 fit parameters in total

@ Full statistical and systematic covariance matrices

— iterative fit to avoid d’Agostini bias
@ VP excluded by definition Tsukuba talk

@ In practice, take bare cross section, remove FSR

@ In calculation of HVP, add FSR in the end via

FY (S = IFY($)(1+ =n(s))
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Fit to 77 data sets: fixed w parameters

1010277 l0.6,0.91
5(sa) [°]  S(sm)[°]  10%¢pu ¢ X2 /dof o DR 1711.03085
SND 110.4 165.5 1.95 0.24 5.30 7-107%  374.1(3.6) 371.7(5.0)
CMD2 109.8 165.5 1.80 0.20 3.37 2.1078  368.3(3.0) 372.4(3.0)
BaBar 110.6 166.0 2.08 0.22 1.53 7.1078  377.3(2.0) 376.7(2.7)
KLOE 110.5 165.8 1.87 0.15 1.67 2.1078  367.1(1.1)  366.9(2.1)

@ Some observations:
@ Caprini, Colangelo, Leutwyler 2011: §(Sp) = 108.9(2.0)°, 6(sm) = 166.5(2.0)°
— 7 phases remarkably consistent among all fits
o Differences mainly in €, and ¢
o Reduced x? and p-values terrible, why?
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Fit to 77 data sets: fitting the w mass

10 7
10 aﬁrho,e,o,s]

M., [MeV] X2 /dof p-value DR 1711.03085

SND 781.54(8)  1.37[5.30] 5.8%[7 - 1029 373.9(3.6)[374.1(3.6)]  371.7(5.0)

CMD2  782.09(7)  1.38[3.37] 10.1%[2-1078  370.7(3.0)[368.3(3.0)]  372.4(3.0)

BaBar  781.91(7)  1.13[1.53] 7.3%[7 - 1078 375.6(2.1)[377.3(2.0)]  376.7(2.7)
(1.1) ( (

KLOE  782.12(14) 1.60[1.67] 3-10~7[2-1078  366.6(1.1)[367.1(1.1)]  366.9(2.1)

@ Further observations:
9 In general vast improvement, most fits acceptable now
@ PDG: M,, = 782.65(12) MeV (dominated by ete— — 37 and et e~ — 7% SND, cMD2)
< shifts much larger than AM,, = M,, — M,, = 0.13MeV from radiative corrections
9 Fitting ', does not yield further improvements

@ For KLOE only modest improvement, why?
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Fit to 77 data sets: energy rescaling

101087:7\"[0,6,0,9]
€ X2 /dof p-value DR 1711.03085
SND 1.00142(11)  1.37[1.37] 5.9% [5.8%] 373.8(3.6)[373.9(3.6)]  371.7(5.0)
CMD2 1.00071(10)  1.38[1.38] 10.1% [10.1%] 370.6(3.0)[370.7(3.0)]  372.4(3.0)
BaBar 1.00095(9)  1.13[1.13] 7.4% [7.3%) 375.5(2.1)[375.6(2.1)]  376.7(2.7)
KLOE 1.00069(18)  1.59[1.60] 3-10~7[3-10"7]  366.5(1.1)[366.6(1.1)]  366.9(2.1)
KLOE (3¢;)  1.00125(20) 1.36 8.-10~* 365.3(1.1) 366.9(2.1)
1.00023(16)
1.00041(28)
KLOE (2¢;)  1.00122(19) 1.35 9.107* 365.2(1.1) 366.9(2.1)
1.00025(16)

@ Further observations:
o Energy rescaling v/s — £+/s equivalent to fit of w mass

9 KLOE fit improves significantly by allowing for different rescalings in KLOE08 and
KLOE10/KLOE12
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Fit to 77 data sets: systematics

1010277 l0.6,0.91
3 X2 /dof p-value DR 1711.03085
SND 1.00142(11) [1.00142(11)]  1.43[1.37) 4.2% [5.9%)] 375.6(4.5)[373.8(3.6)]  371.7(5.0)
CMD2 1.00069(10)[1.00071(10)]  1.40[1.38]  10.2%[10.1%]  372.9(3.4)[370.6(3.0)]  372.4(3.0)
BaBar 1.00096(9) [1.00095(9)]  1.13[1.13] 7.2% [7.4%) 375.9(2.2)[375.5(2.1)]  876.7(2.7)
KLOE (2¢;)  1.00121(19)[1.00122(19)]  1.30[1.35]  0.4%[9-10~%]  367.2(1.4)[365.2(1.1)]  366.9(2.1)
1.00023(16) [1.00025(16)]

@ Systematic uncertainties:
@ Dominant effect: order of the conformal polynomial (here: p = 3)
— some further improvement for KLOE
@ Others: asymptotics of phase (negligible), uncertainties in Roy phase (~ 0.5 units), sq
(~ 0.5 units)
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Fit to 7 data sets: a first look at combinations

10
1077 |15 6 0.9

x2/dof  p-value DR KNT18
direct scan 1.40 1.7% 373.8(2.7) 370.8(2.6)
BaBar 1.13 7.2% 375.9(2.2)  376.7(2.7)
KLOE 1.30 0.4% 367.2(1.4)  366.9(2.1)
all 1.31 3.107%  369.9(1.1)  369.4(1.3)

@ Caveats:
9 Systematic errors missing
— total errors likely larger than in direct integration (but not much)
9 Fits not perfect: PDG scale factors?
@ Very stable prediction for low-energy region: a7™|_, .. = 133.0(3)(5) - 10~ °

— compare to 131.1 (1 0) KNT18, 1333(7) Ananthanarayan et al. 2016
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Conclusions

@ Better understanding of 77 channel from analyticity and unitarity?
@ Some preliminary fit results
@ Acceptable fit only for variable w mass =- energy rescaling
@ KLOEO08 and KLOE10/KLOE12 seem to favor different such rescalings
@ Systematic error dominated by order of conformal polynomial
— Eidelman—tukaszuk bound
@ For [0.6,0.9] GeV good agreement with direct integration within (comparable) errors
@ Parameterization becomes increasingly stringent for small energies
@ Outlook
@ Combination strategy: PDG scale factors?
@ Space-like data

@ Can we help resolve the controversy in =7 channel?
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How to define the pion form factor?

@ In QCD: matrix element of the electromagnetic current j.,, = gQv*q

(T ()ibnlmE (p)) = (o + p)eFY(s)  s=(p' —p)?
@ Relation to cross section

2m? 4Mm2
2S+ on(s) = |1 - X%

olete” wrtn7) = o(5) S

o3 (s)|Fy ()]

m)z(s)
3s

@ Two issues

@ Vacuum polarization: a(s) = «(0)/(1 — I(s)) a = a(0)

9 Final-state radiation: o(et e~ — nt7—(y)) = o(ete™ — w*w*)(1 —+ %n(s))
@ Usually

@ For HVP: bare cross section including FSR

oo(ete — mta (7)) = 03 (5)|FY(5)P 2% (1 + 2n(s))

soe(S)

s+2me
e(s)

@ Absorb VP into form factor, i.e. cr(e+e —atr) =T & o3(s) |FV(S |2

@ Here: keep the QCD FY(s)!
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Role of p—y (and p—w) mixing

@ In the context of 7 data, po—'y mixing critical Jegerlehner, Szafron 2011

@ Reason: isospin-breaking corrections cirigliano, Ecker, Neufeld 2001, 2002 €xpressed in

. + +
terms of p* and p° Breit-Wigner parameters LN o
< need to identify a physical p° state @ @
@ Here: external states are e"e™ and 77~ = oo

@ p’— diagonalization related to 7¥7~ — 4* — 777~ transition
@ Consider coupled channel system of e"e~ and 7" 7~ Hanhart 2012

@ Similarly: 37 channel for p—w mixing
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Step 1: nT 7~ scattering

@ Partial-wave projected amplitude

7wt om
t (s) = _47roz(S) (S _ 4M‘r2r) (FX(S))Z N .

S =)
@ VP from n"n~ states ‘ >

Sos ™ e CEFY ()2
127 Jame s'(s’ — s —ie)

MNx(s) =

Full amplitude

- t Vi Vi tr
() = Hs) +E&r(S) ou(8)ta(S)T]()En(S) >_R<—>:”<+>—l@—ﬁ<

~~

487t (s) ty(s)

— takes form of single-channel Bethe—Salpeter equation with

@ “potential” Vg(s) = —422
@ tr(s) = 1—vvf?s()sx2 ©)
@ centrifugal barrier factors &x(s) = /s — 4M2 TH T
v
_ 2 e ggon@)Eere)? @ Touls) =Tn(s) = Fr(s)
@ self energy Zﬂ-(s) = f4M3r ds/w
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Step 2: #t7n~ and ete~ (and pT ) scattering

@ Lepton VP

Me(s) =

_@sj[‘w ds/—&[(sl)4(s/ +2m) = VR(s)Z¢(s)

s 7 Jam2 §2(s" — s — ie)

— same form as for 7" 7~ with &(s) = 2y/s+2m2 and T = 1

(t(5))5 = 3;41(s) + &(8) (Tour(8))i (tr(3)) ; (T () i(8)

11

WIth tg(s) = (1 — VR(s)Z(s)) ""Va(s)  Va(s) = —4z= (1 ;

) ¥(s) = diag (X (s), Te(s))
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Step 2: #t7n~ and ete~ (and pT ) scattering

@ Lepton VP

Me(s) =

_4”70“12[‘00 ds/—&[(sl)4(s/ +2m) = VR(s)Z¢(s)

s 7 Jam2 §2(s" — s — ie)

— same form as for 7" 7~ with &(s) = 2y/s+2m2 and T = 1

(t(5))5 = 3;41(s) + &(8) (Tour(8))i (tr(3)) ; (T () i(8)

With ta(s) = (1 — Va(s)5(s)) ""Va(s)  Va(s) = — 41 (1 1) £(s) = diag (T (s), Te(s))
@ From (t(s))12 we find

ma? o3(5)| FY()? s + 28
3s |1 —=TI(s)]2 soe(s)

olete” - ntn™) = N(s) = Nx(s) + Me(s) + Myu(s)

< no effect besides VP, in which F(s) should be fit self-consistently!

@ Note: no necessity to ever specify a p external state
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Step 3: et e~ and 3r scattering

@ Can describe e"e™ — 37 with dispersion relations mH, Kubis, Leupold, Niecknig, Schneider 2014

@ Here: capture the dominant contribution from the w, leading to the ansatz

va(s>——“”—°”(1 g3s> ;<° °> 5(s) = diag(e(s), T,)

s \gms (g2 S—Mo\o g2
@ Bare parameters gs, gus, 23-, M., o via matching to physical quantities

@ VP from 37 states

s 1
My, = Pw Y TV
(s) () + 92, 85— M2 +iM,Te,

— strictly speaking only valid near the resonance, set polynomial P, (s) =0

@ 9., = 16.7(2) determined from w — e* e~ width
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Step 3: w parameters

@ (t(s)); all involve VP factor (1 — MMe(s) — I'Iw(s))_1
— ensures universality of the w pole
@ But: the pole parameters are shifted with respect to the ones from I, (s)
2 &2 _ _
S— M2 4 iMuFy — ——25 = (1 - —) (s—M5+ierw) +o(et
gE)'y(1 - ne(s)) 3)’\/ ( )

with, up to O(e*),

- e? - e e?
M, =1+ )Mw rw:(1+ )rw Qw = — Z=1+—
( 202+ 292, vz &,
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Step 3: w parameters

@ (t(s)); all involve VP factor (1 — MMe(s) — I'Iw(s))_1
— ensures universality of the w pole

@ But: the pole parameters are shifted with respect to the ones from I, (s)
s €2 _ _
s— M +iMTy — ——-— = (1 - —) (s—M5+ierw) +0(e*
g3, (1 = Ne(s)) 2y (&)
with, up to O(e*),
e _ e? _ e e?
M, = (1 M, Fro=(1 Mo oy = ) Z=14 —_
( " 22 ) ( +295W) Gr =77 T

@ Numerically

AM,, = My — My, = 0.13MeV [PDG: 0.12MeV]  Agury = Gy — Gy = —3 x 1073
AT, =Tw — T = 1.4keV [PDG: 0.08 MeV/]

— potentially relevant for the mass
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Step 4: full system

@ Channels: 1 =n"n",2=¢ete",3=p"p ,4=3n

1 1 1 938 92, 0 0 guogus
Va(s) = — 4ra | 1 1 1 gs | 1 0 0 0 0
s 1 1 1 g3s s— M, 0 0 0 0
9S 935 @3S (93s)? Gw20us 0 0 g2,

@ (1 —T(s))~" again factorizes in all amplitudes

25€pw
M;

I'I(s) = ne(s) + rl,u(S) + |_|71-(S) (1 + m

)+ 1u(s) + 0(a2)
@ Further renormalization of w parameters
AT, ~ —0.06 MeV [PDG: 0.08 MeV]

— enhanced by M, /T ,, related to p—w mixing (gw2 = €pw Gey)
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Step 4: result for the form factor

Relation between ete~ — ntx~ and the QCD pion form factor

2 s+2m
Soe(S)

) + My (s) + O(,)

_ . a2 a3 (s)|FY(s)]?
olete —»ntn ):gka—‘r

Sepw
M2 — s — iMuTo

25€pw

1(8) = Me(9) + () + 1(5) (14 ot

@ Recognize Gs(s)
— p—w mixing reproduced
@ No Gs(s) without consideration of 47 channel

— still parameterize by conformal polynomial
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Step 4: result for the form factor

Relation between ete~ — ntx~ and the QCD pion form factor

2 3 V()2 2

- + - T Uw(s)|F‘rr(s)| 28+ 2mg

ole’e” =) = ST nee | @O s
M(s) = Me(s) + Mu(s) + rlﬁ(s)(1 +op _2336_;:7”, rf) + Mu(s) + 0(4,)

@ Lessons for the fit of FY(s)

@ Cleanest input should be pion form factor from experiment (no assumptions on VP),
but: unitarity/analyticity constraints apply to QCD form factor
— need to account for VP in the fit

9 Alternatively: use bare cross section, but need to remove FSR and rely on VP used by
respective experiment

@ No further corrections from p—y mixing (would only be relevant when using explicit p
states, similarly to shifts in w parameters)

9 w parameters in G3(s) are not the physical pole parameters, potentially relevant shifts
due to VP
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Eidelman—t.ukaszuk bound

@ 7 amplitude

n1 €251 — 1
= -
2iox
@ From unitarity relation tukaszuk 1973
1_ 2 _ 1-2 o=
( . ) + 1y Sin Gy < ——1Lr r= ——non2r
2 4 Ue*e*—»w*rr*

@ Implies bound Eidelman, tukaszuk 2003
. 1
sin? Ginel < é(1 —V1-r2)
— shows that dine ~ 0 below s,

@ Better constraint on dine; When providing input for inelasticity 7
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