Hadronic vacuum polarization: $\pi\pi$ channel and pion form factor

Martin Hoferichter

Institute for Nuclear Theory University of Washington

Second Plenary Workshop of the Muon g-2 Theory Initiative

Mainz, June 20, 2018

G. Colangelo, MH, M. Procura, P. Stoffer, work in progress

C. Hanhart, MH, B. Kubis, work in progress

Motivation

- How to estimate uncertainty in the $\pi\pi$ channel?
 - → local error inflation wherever tensions between data sets arise
- In QCD: analyticity and unitarity imply strong relation between pion form factor and ππ scattering
 - → defines global fit function
- Main motivation: Can one use these constraints to corroborate the uncertainty estimate for the $\pi\pi$ channel?
- Idea not new de Trocóniz, Ynduráin 2001, 2004, Leutwyler, Colangelo 2002, 2003, Ananthanarayan et al. 2013, 2016
- Here: towards practical implementation, first numerical results see talk at Tsukuba meeting for more details on the formalism

Unitarity relation for the pion form factor

Unitarity for pion vector form factor

$$\operatorname{Im} F_{\pi}^{V}(s) = \theta(s - 4M_{\pi}^{2})F_{\pi}^{V}(s)e^{-i\delta_{1}(s)}\sin\delta_{1}(s) \qquad \operatorname{visc} F_{\pi}^{V}$$

 \hookrightarrow final-state theorem: phase of F_{π}^{V} equals $\pi\pi$ P-wave phase δ_{1} Watson 1954

Unitarity relation for the pion form factor

Unitarity for pion vector form factor

$$\operatorname{Im} F_{\pi}^{V}(s) = \theta(s - 4M_{\pi}^{2})F_{\pi}^{V}(s)e^{-i\delta_{1}(s)}\sin\delta_{1}(s) \qquad \operatorname{viso} F_{\pi}^{V}(s) = \frac{1}{2}\operatorname{viso} F_{\pi}^{V}(s)e^{-i\delta_{1}(s)}\sin\delta_{1}(s)$$

- \hookrightarrow final-state theorem: phase of F_{π}^{V} equals $\pi\pi$ *P*-wave phase δ_{1} watson 1954
- Solution in terms of Omnès function Omnès 1958

$$F_{\pi}^{V}(s) = P(s)\Omega_{1}(s)$$
 $\Omega_{1}(s) = \exp\left\{rac{s}{\pi}\int_{4M_{\pi}^{2}}^{\infty}\mathrm{d}s'rac{\delta_{1}(s')}{s'(s'-s)}
ight\}$

- Asymptotics + normalization $\Rightarrow P(s) = 1$
- In practice: inelastic corrections $F_{\pi}^{V}(s) = G_{3}(s)G_{4}(s)\Omega_{1}(s)$

Intermediate states beyond $\pi\pi$

• 3π states: forbidden for $m_u = m_d$, but otherwise correction factor

$$G_3(s) = 1 + rac{s}{\pi} \int_{9M_\pi^2}^{\infty} \mathrm{d}s' rac{\mathrm{Im} \ G_3(s')}{s'(s'-s)} \qquad \qquad \mathrm{Im} \ G_3(s) \sim (s-9M_\pi^2)^4$$

• In practice: completely dominated by ω pole

$$G_3(s) = 1 + \epsilon_{\rho\omega} \frac{s}{s_{\omega} - s}$$
 $s_{\omega} = \left(M_{\omega} - i\frac{\Gamma_{\omega}}{2}\right)^2$

Intermediate states beyond $\pi\pi$

• 3π states: forbidden for $m_u = m_d$, but otherwise correction factor

$$G_3(s) = 1 + \frac{s}{\pi} \int_{9M_\pi^2}^{\infty} \mathrm{d}s' \frac{\mathrm{Im} \ G_3(s')}{s'(s'-s)} \qquad \qquad \mathrm{Im} \ G_3(s) \sim (s-9M_\pi^2)^4$$

• In practice: completely dominated by ω pole

$$G_3(s) = 1 + \epsilon_{\rho\omega} \frac{s}{s_{\omega} - s}$$
 $s_{\omega} = \left(M_{\omega} - i \frac{\Gamma_{\omega}}{2}\right)^2$

• 4π states: correction factor

$$G_4(s) = 1 + \frac{s}{\pi} \int_{16M_{\pi}^2}^{\infty} ds' \frac{\text{Im } G_4(s')}{s'(s'-s)} \qquad \qquad \text{Im } G_4(s) \sim (s - 16M_{\pi}^2)^{9/2}$$

ullet In practice: negligible below $\pi\omega$ threshold <code>Eidelman</code>, <code>Łukaszuk</code> 2003

$$G_{4}(s) = 1 + \sum_{i=1}^{p} c_{i} (z(s)^{i} - z(0)^{i}) \qquad z(s) = \frac{\sqrt{s_{\pi\omega} - s_{1}} - \sqrt{s_{\pi\omega} - s}}{\sqrt{s_{\pi\omega} - s_{1}} + \sqrt{s_{\pi\omega} - s}} \qquad s_{\pi\omega} = (M_{\pi} + M_{\omega})^{2}$$

• Inelastic phase above $s_{\pi\omega}$ constrained by P-wave behavior and Eidelman–Łukaszuk bound

Parameterization of the $\pi\pi$ phase shift

- Isospin I=1 P-wave t_1 related to other $\pi\pi$ channels by Roy equations
 - → manifestation of analyticity, unitarity, and crossing symmetry
- Mathematical properties well understood Gasser, Wanders 1999
- Solving δ_1 below $\sqrt{s_m} = 1.15 \,\text{GeV}$, there are two free parameters
 - \hookrightarrow take $\delta_1(s_m)$ and $\delta_1(s_A)$, $\sqrt{s_A} = 0.8 \, \text{GeV}$
- Family of solutions from Caprini, Colangelo, Leutwyler 2011
 - \hookrightarrow effective parameterization in terms of $\delta_1(s_m)$ and $\delta_1(s_A)$
- In total: 3 + p fit parameters for F_{π}^{V}

Fit to $\pi\pi$ data sets: strategy

- For now: one fixed representation for $F_{\pi}^{V}(s)$, e.g. 1 free parameter in conformal polynomial
- \bullet For now: fix ω parameters to PDG values
 - \hookrightarrow 4 fit parameters in total
- Full statistical and systematic covariance matrices
- VP excluded by definition Tsukuba talk
- In practice, take bare cross section, remove FSR
- In calculation of HVP, add FSR in the end via

$$|F_{\pi}^{V}(s)|^{2} \rightarrow |F_{\pi}^{V}(s)|^{2} \Big(1 + \frac{\alpha}{\pi} \eta(s)\Big)$$

Fit to $\pi\pi$ data sets: fixed ω parameters

							$10^{10} a_{\mu}^{\pi\pi}$	
	$\delta(s_{A})[^{\circ}]$	$\delta(s_{m})[^{\circ}]$	$10^3 \epsilon_{ ho\omega}$	c ₁	$\chi^2/{ m dof}$	р	DR	1711.03085
SND	110.4	165.5	1.95	0.24	5.30	$7 \cdot 10^{-26}$	374.1(3.6)	371.7(5.0)
CMD2	109.8	165.5	1.80	0.20	3.37	$2\cdot 10^{-8}$	368.3(3.0)	372.4(3.0)
BaBar	110.6	166.0	2.08	0.22	1.53	$7 \cdot 10^{-8}$	377.3(2.0)	376.7(2.7)
KLOE	110.5	165.8	1.87	0.15	1.67	$2 \cdot 10^{-8}$	367.1(1.1)	366.9(2.1)

Some observations:

- Caprini, Colangelo, Leutwyler 2011: $\delta(s_{\rm A})=108.9(2.0)^\circ$, $\delta(s_{\rm m})=166.5(2.0)^\circ$ $\hookrightarrow \pi\pi$ phases remarkably consistent among all fits
- Differences mainly in $\epsilon_{\rho\omega}$ and c_1
- Reduced χ^2 and *p*-values terrible, why?

Fit to $\pi\pi$ data sets: fitting the ω mass

				$10^{10} a_{\mu}^{\pi\pi} _{[0.6,0.9]}$		
	M_{ω} [MeV]	$\chi^2/{ m dof}$	<i>p</i> -value	DR	1711.03085	
SND	781.54(8)	1.37 [5.30]	$5.8\% [7 \cdot 10^{-26}]$	373.9(3.6) [374.1(3.6)]	371.7(5.0)	
CMD2	782.09(7)	1.38 [3.37]	$10.1\% [2 \cdot 10^{-8}]$	370.7(3.0) [368.3(3.0)]	372.4(3.0)	
BaBar	781.91(7)	1.13 [1.53]	$7.3\% [7 \cdot 10^{-8}]$	375.6(2.1) [377.3(2.0)]	376.7(2.7)	
KLOE	782.12(14)	1.60 [1.67]	$3 \cdot 10^{-7} [2 \cdot 10^{-8}]$	366.6(1.1)[367.1(1.1)]	366.9(2.1)	

Further observations:

- In general vast improvement, most fits acceptable now
- PDG: $M_{\omega}=782.65(12)$ MeV (dominated by $e^+e^- \to 3\pi$ and $e^+e^- \to \pi^0\gamma$ SND, CMD2) \hookrightarrow shifts much larger than $\Delta M_{\omega}=\bar{M}_{\omega}-M_{\omega}=0.13$ MeV from radiative corrections
- Fitting Γ_{ω} does not yield further improvements
- For KLOE only modest improvement, why?

Fit to $\pi\pi$ data sets: energy rescaling

				$10^{10} a_{\mu}^{\pi\pi} _{[0.6,0.9]}$		
	ξ	$\chi^2/{ m dof}$	<i>p</i> -value	DR	1711.03085	
SND	1.00142(11)	1.37 [1.37]	5.9% [5.8%]	373.8(3.6) [373.9(3.6)]	371.7(5.0)	
CMD2	1.00071(10)	1.38 [1.38]	10.1% [10.1%]	370.6(3.0) [370.7(3.0)]	372.4(3.0)	
BaBar	1.00095(9)	1.13 [1.13]	7.4% [7.3%]	375.5(2.1) [375.6(2.1)]	376.7(2.7)	
KLOE	1.00069(18)	1.59 [1.60]	$3 \cdot 10^{-7} [3 \cdot 10^{-7}]$	366.5(1.1)[366.6(1.1)]	366.9(2.1)	
KLOE $(3\xi_i)$	1.00125(20)	1.36	$8 \cdot 10^{-4}$	365.3(1.1)	366.9(2.1)	
	1.00023(16)					
	1.00041(28)					
KLOE (2 ξ_i)	1.00122(19)	1.35	$9 \cdot 10^{-4}$	365.2(1.1)	366.9(2.1)	
	1.00025(16)					

Further observations:

- Energy rescaling $\sqrt{s} \to \xi \sqrt{s}$ equivalent to fit of ω mass
- KLOE fit improves significantly by allowing for different rescalings in KLOE08 and KLOE10/KLOE12

Fit to $\pi\pi$ data sets: systematics

				$10^{10} a_{\mu}^{\pi\pi} _{[0.6,0.9]}$		
	ξ	$\chi^2/{ m dof}$	<i>p</i> -value	DR	1711.03085	
SND	1.00142(11) [1.00142(11)]	1.43 [1.37]	4.2% [5.9%]	375.6(4.5)[373.8(3.6)]	371.7(5.0)	
CMD2	1.00069(10) [1.00071(10)]	1.40 [1.38]	10.2% [10.1%]	372.9(3.4)[370.6(3.0)]	372.4(3.0)	
BaBar	1.00096(9) [1.00095(9)]	1.13 [1.13]	7.2% [7.4%]	375.9(2.2)[375.5(2.1)]	376.7(2.7)	
KLOE (2 ξ_i)	1.00121(19) [1.00122(19)]	1.30 [1.35]	$0.4\% [9 \cdot 10^{-4}]$	367.2(1.4)[365.2(1.1)]	366.9(2.1)	
	1.00023(16) [1.00025(16)]					

Systematic uncertainties:

- Dominant effect: order of the conformal polynomial (here: ρ = 3)

 → some further improvement for KLOE
- Others: asymptotics of phase (negligible), uncertainties in Roy phase (\sim 0.5 units), s_1 (\sim 0.5 units)

Fit to $\pi\pi$ data sets: a first look at combinations

			$10^{10} a_{\mu}^{\pi\pi} _{[0.6,0.9]}$	
	$\chi^2/{ m dof}$	<i>p</i> -value	DR	KNT18
direct scan	1.40	1.7%	373.8(2.7)	370.8(2.6)
BaBar	1.13	7.2%	375.9(2.2)	376.7(2.7)
KLOE	1.30	0.4%	367.2(1.4)	366.9(2.1)
all	1.31	$3 \cdot 10^{-6}$	369.9(1.1)	369.4(1.3)

Caveats:

- Systematic errors missing
- Fits not perfect: PDG scale factors?
- Very stable prediction for low-energy region: $a_{\mu}^{\pi\pi}|_{<0.63} = 133.0(3)(5) \cdot 10^{-10}$
 - \hookrightarrow compare to 131.1(1.0) KNT18, 133.3(7) Ananthanarayan et al. 2016

Conclusions

- Better understanding of $\pi\pi$ channel from **analyticity** and **unitarity**?
- Some preliminary fit results
 - Acceptable fit only for variable ω mass \Rightarrow energy rescaling
 - KLOE08 and KLOE10/KLOE12 seem to favor different such rescalings
 - Systematic error dominated by order of conformal polynomial
 - For [0.6, 0.9] GeV good agreement with direct integration within (comparable) errors
 - Parameterization becomes increasingly stringent for small energies
- Outlook
 - Combination strategy: PDG scale factors?
 - Space-like data
 - Can we help resolve the controversy in $\pi\pi$ channel?

How to define the pion form factor?

• In QCD: matrix element of the electromagnetic current $j_{
m em}^{\mu}=ar{q}Q\gamma^{\mu}q$

$$\langle \pi^{\pm}(p')|j_{\mathsf{em}}^{\mu}|\pi^{\pm}(p)
angle = \pm(p+p')^{\mu}e\mathsf{F}_{\pi}^{V}(s) \qquad s=(p'-p)^{2}$$

Relation to cross section

$$\sigma(e^{+}e^{-} \to \pi^{+}\pi^{-}) = \frac{\pi\alpha(s)^{2}}{3s}\sigma_{\pi}^{3}(s) |F_{\pi}^{V}(s)|^{2} \frac{s + 2m_{\theta}^{2}}{s\sigma_{\theta}(s)} \qquad \sigma_{\pi}(s) = \sqrt{1 - \frac{4M_{\pi}^{2}}{s}}$$

- Two issues
 - Vacuum polarization: $\alpha(s) = \alpha(0)/(1 \Pi(s))$ $\alpha \equiv \alpha(0)$
 - Final-state radiation: $\sigma(e^+e^- \to \pi^+\pi^-(\gamma)) = \sigma(e^+e^- \to \pi^+\pi^-) \Big(1 + \frac{\alpha}{\pi}\eta(s)\Big)$
- Usually
 - For HVP: bare cross section including FSR

$$\sigma_0(e^+e^-\to\pi^+\pi^-(\gamma)) = \frac{\pi\alpha^2}{3s}\sigma_\pi^3(s)\big|F_\pi^V(s)\big|^2 \frac{s+2m_e^2}{s\sigma_e(s)}\Big(1+\tfrac{\alpha}{\pi}\eta(s)\Big)$$

- Absorb VP into form factor, i.e. $\sigma(e^+e^- \to \pi^+\pi^-) = \frac{\pi\alpha^2}{3s} \sigma_\pi^3(s) |\tilde{F}_\pi^V(s)|^2 \frac{s+2m_e^2}{s\sigma_e(s)}$
- Here: keep the QCD $F_{\pi}^{V}(s)$!

Role of ρ - γ (and ρ - ω) mixing

- In the context of au data, ho^0 - γ mixing critical Jegerlehner, Szafron 2011
- \bullet Here: external states are $\emph{e}^{+}\emph{e}^{-}$ and $\pi^{+}\pi^{-}$
- ρ^0 - γ diagonalization related to $\pi^+\pi^- \to \gamma^* \to \pi^+\pi^-$ transition
- ullet Consider coupled channel system of e^+e^- and $\pi^+\pi^-$ Hanhart 2012
- Similarly: 3π channel for ρ – ω mixing

Step 1: $\pi^+\pi^-$ scattering

Partial-wave projected amplitude

$$t_{\gamma}(s) = -\frac{4\pi\alpha(s)}{s} \left(s - 4M_{\pi}^{2}\right) \left(F_{\pi}^{V}(s)\right)^{2}$$

• VP from $\pi^+\pi^-$ states

$$\Pi_{\pi}(s) = -\frac{\alpha s}{12\pi} \int_{4M_{\pi}^{2}}^{\infty} \mathrm{d}s' \frac{\sigma_{\pi}^{3}(s')|F_{\pi}^{V}(s')|^{2}}{s'(s'-s-i\epsilon)}$$

Full amplitude

$$t(s) = \underbrace{\tilde{t}(s)}_{48\pi t_1(s)} + \underbrace{\xi_{\pi}(s)\Gamma_{\mathsf{out}}(s)t_{\mathsf{R}}(s)\Gamma_{\mathsf{in}}^{\dagger}(s)\xi_{\pi}(s)}_{t_{\gamma}(s)}$$

- - "potential" $V_R(s) = -\frac{4\pi\alpha}{s}$
 - centrifugal barrier factors $\xi_{\pi}(s) = \sqrt{s 4M_{\pi}^2}$
 - self energy $\Sigma_{\pi}(s) = \frac{s^2}{\pi} \int_{4M^2}^{\infty} ds' \frac{\tilde{\sigma}_{\pi}(s')\xi_{\pi}^2(s')|\Gamma(s')|^2}{s'^2(s'-s-i\epsilon)}$

Step 2: $\pi^+\pi^-$ and e^+e^- (and $\mu^+\mu^-$) scattering

Lepton VP

$$\Pi_{\ell}(s) = -\frac{4\pi\alpha}{s} \frac{s^2}{\pi} \int_{4m_{\ell}^2}^{\infty} ds' \frac{\tilde{\sigma}_{\ell}(s')4(s'+2m_{\ell}^2)}{s'^2(s'-s-i\epsilon)} \equiv V_{R}(s)\Sigma_{\ell}(s)$$

 \hookrightarrow same form as for $\pi^+\pi^-$ with $\xi_\ell(s)=2\sqrt{s+2m_\ell^2}$ and $\Gamma=1$

Full system

$$(t(s))_{ij} = \delta_{ij}\delta_{1i}\tilde{t}(s) + \xi_i(s)(\Gamma_{\text{out}}(s))_i(t_{\mathsf{R}}(s))_{ij}(\Gamma_{\text{in}}^{\dagger}(s))_j\xi_j(s)$$

$$\text{With } t_{\textit{H}}(s) = \begin{pmatrix} \mathbb{1} - \textit{V}_{\textit{H}}(s) \Sigma(s) \end{pmatrix}^{-1} \underbrace{\textit{V}_{\textit{H}}(s)}_{\textit{H}}(s) \qquad \underbrace{\textit{V}_{\textit{H}}(s)}_{\textit{H}} = -\frac{4\pi\alpha}{s} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \qquad \Sigma(s) = \text{diag} \big(\Sigma_{\pi}(s), \Sigma_{\theta}(s) \big)$$

Step 2: $\pi^+\pi^-$ and e^+e^- (and $\mu^+\mu^-$) scattering

Lepton VP

$$\Pi_{\ell}(s) = -\frac{4\pi\alpha}{s} \frac{s^2}{\pi} \int_{4m_{\ell}^2}^{\infty} ds' \frac{\tilde{\sigma}_{\ell}(s')4(s'+2m_{\ell}^2)}{s'^2(s'-s-i\epsilon)} \equiv V_{R}(s)\Sigma_{\ell}(s)$$

 \hookrightarrow same form as for $\pi^+\pi^-$ with $\xi_\ell(s)=2\sqrt{s+2m_\ell^2}$ and $\Gamma=1$

Full system

$$(t(s))_{ij} = \delta_{ij}\delta_{1i}\tilde{t}(s) + \xi_i(s)(\Gamma_{\text{out}}(s))_i(t_R(s))_{ij}(\Gamma_{\text{in}}^{\dagger}(s))_j\xi_j(s)$$

with
$$t_R(s) = (1 - V_R(s)\Sigma(s))^{-1}V_R(s)$$
 $V_R(s) = -\frac{4\pi\alpha}{s}\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ $\Sigma(s) = \operatorname{diag}(\Sigma_{\pi}(s), \Sigma_{\theta}(s))$

• From $(t(s))_{12}$ we find

$$\sigma(e^{+}e^{-} \to \pi^{+}\pi^{-}) = \frac{\pi\alpha^{2}}{3s} \frac{\sigma_{\pi}^{3}(s)|F_{\pi}^{V}(s)|^{2}}{|1 - \Pi(s)|^{2}} \frac{s + 2m_{e}^{2}}{s\sigma_{e}(s)} \qquad \Pi(s) = \Pi_{\pi}(s) + \Pi_{e}(s) + \Pi_{\mu}(s)$$

 \hookrightarrow no effect besides VP, in which $F_{\pi}^{V}(s)$ should be fit self-consistently!

• Note: no necessity to ever specify a ρ external state

Step 3: e^+e^- and 3π scattering

- ullet Can describe $e^+e^- o 3\pi$ with dispersion relations MH, Kubis, Leupold, Niecknig, Schneider 2014
- Here: capture the dominant contribution from the ω , leading to the ansatz

$$V_{\textit{R}}(\textit{s}) = -\frac{4\pi\alpha}{\textit{s}} \begin{pmatrix} 1 & g_3 \textit{s} \\ g_3 \textit{s} & (g_3 \textit{s})^2 \end{pmatrix} - \frac{1}{\textit{s} - \textit{M}_{\omega,0}^2} \begin{pmatrix} 0 & 0 \\ 0 & g_{\omega3}^2 \end{pmatrix} \qquad \Sigma(\textit{s}) = \text{diag}(\Sigma_{\textit{e}}(\textit{s}), \Sigma_{3\pi})$$

- Bare parameters g_3 , $g_{\omega 3}$, $\Sigma_{3\pi}$, $M_{\omega,0}$ via matching to physical quantities
- VP from 3π states

$$\Pi_{\omega}(s) = P_{\omega}(s) + rac{e^2 s}{g_{\omega\gamma}^2} rac{1}{s - M_{\omega}^2 + i M_{\omega} \Gamma_{\omega}}$$

- \hookrightarrow strictly speaking only valid near the resonance, set polynomial $P_{\omega}(s)=0$
- $g_{\omega\gamma}=$ 16.7(2) determined from $\omega \to e^+e^-$ width

Step 3: ω parameters

- $(t(s))_{ij}$ all involve VP factor $(1 \Pi_e(s) \Pi_\omega(s))^{-1}$ \hookrightarrow ensures universality of the ω pole
- But: the pole parameters are shifted with respect to the ones from $\Pi_{\omega}(s)$

$$s - \mathit{M}_{\omega}^{2} + \mathit{i} \mathit{M}_{\omega} \Gamma_{\omega} - \frac{e^{2}s}{g_{\omega\gamma}^{2}(1 - \Pi_{e}(s))} \equiv \left(1 - \frac{e^{2}}{g_{\omega\gamma}^{2}}\right) \left(s - \bar{\mathit{M}}_{\omega}^{2} + \mathit{i} \bar{\mathit{M}}_{\omega} \bar{\Gamma}_{\omega}\right) + \mathcal{O}\left(e^{4}\right)$$

with, up to $\mathcal{O}(e^4)$,

$$\bar{\textit{M}}_{\omega} = \left(1 + \frac{e^2}{2g_{\omega\gamma}^2}\right) \textit{M}_{\omega} \qquad \bar{\Gamma}_{\omega} = \left(1 + \frac{e^2}{2g_{\omega\gamma}^2}\right) \Gamma_{\omega} \qquad \bar{g}_{\omega\gamma} = \frac{g_{\omega\gamma}}{\sqrt{Z}} \qquad Z = 1 + \frac{e^2}{g_{\omega\gamma}^2}$$

Step 3: ω parameters

- $(t(s))_{ij}$ all involve VP factor $(1 \Pi_e(s) \Pi_\omega(s))^{-1}$
 - \hookrightarrow ensures universality of the ω pole
- But: the pole parameters are shifted with respect to the ones from $\Pi_{\omega}(s)$

$$s - \mathit{M}_{\omega}^{2} + \mathit{i} \mathit{M}_{\omega} \Gamma_{\omega} - \frac{e^{2}s}{g_{\omega\gamma}^{2}(1 - \Pi_{e}(s))} \equiv \left(1 - \frac{e^{2}}{g_{\omega\gamma}^{2}}\right) \left(s - \bar{\mathit{M}}_{\omega}^{2} + \mathit{i} \bar{\mathit{M}}_{\omega} \bar{\Gamma}_{\omega}\right) + \mathcal{O}\left(e^{4}\right)$$

with, up to $\mathcal{O}(e^4)$,

$$ar{M}_{\omega} = \left(1 + rac{e^2}{2g_{\omega\gamma}^2}\right) M_{\omega} \qquad ar{\Gamma}_{\omega} = \left(1 + rac{e^2}{2g_{\omega\gamma}^2}\right) \Gamma_{\omega} \qquad ar{g}_{\omega\gamma} = rac{g_{\omega\gamma}}{\sqrt{Z}} \qquad Z = 1 + rac{e^2}{g_{\omega\gamma}^2}$$

Numerically

$$\Delta M_{\omega} = \bar{M}_{\omega} - M_{\omega} = 0.13 \, \text{MeV} \, [\text{PDG: 0.12 MeV}]$$
 $\Delta g_{\omega\gamma} = \bar{g}_{\omega\gamma} - g_{\omega\gamma} = -3 \times 10^{-3}$ $\Delta \Gamma_{\omega} = \bar{\Gamma}_{\omega} - \Gamma_{\omega} = 1.4 \, \text{keV} \, [\text{PDG: 0.08 MeV}]$

 \hookrightarrow potentially relevant for the mass

Step 4: full system

• Channels: $1 = \pi^+\pi^-$, $2 = e^+e^-$, $3 = \mu^+\mu^-$, $4 = 3\pi$

$$egin{aligned} V_{R}(s) &= -rac{4\pilpha}{s} egin{pmatrix} 1 & 1 & 1 & g_3s \ 1 & 1 & 1 & g_3s \ 1 & 1 & 1 & g_3s \ g_3s & g_3s & (g_3s)^2 \end{pmatrix} - rac{1}{s-M_{\omega,0}^2} egin{pmatrix} g_{\omega 2}^2 & 0 & 0 & g_{\omega 2}g_{\omega 3} \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ g_{\omega 2}g_{\omega 3} & 0 & 0 & g_{\omega 3}^2 \end{pmatrix} \end{aligned}$$

• $(1 - \Pi(s))^{-1}$ again factorizes in all amplitudes

$$\Pi(s) = \Pi_{e}(s) + \Pi_{\mu}(s) + \Pi_{\pi}(s) \left(1 + \frac{2s\epsilon_{\rho\omega}}{M_{\omega}^{2} - s - iM_{\omega}\Gamma_{\omega}}\right) + \Pi_{\omega}(s) + \mathcal{O}(g_{\omega 2}^{2})$$

• Further renormalization of ω parameters

$$\Delta\Gamma_{\omega} \simeq -0.06\,\text{MeV}$$
 [PDG: 0.08 MeV]

 \hookrightarrow enhanced by M_{ρ}/Γ_{ρ} , related to ρ - ω mixing $(g_{\omega 2} = \epsilon_{\rho\omega}g_{\omega\gamma})$

Step 4: result for the form factor

Relation between $e^+e^- o \pi^+\pi^-$ and the QCD pion form factor

$$\sigma(e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}) = \frac{\pi\alpha^{2}}{3s} \frac{\sigma_{\pi}^{3}(s) \left| F_{\pi}^{V}(s) \right|^{2}}{\left| 1 - \Pi(s) \right|^{2}} \times \left| 1 + \frac{s\epsilon_{\rho\omega}}{M_{\omega}^{2} - s - iM_{\omega}\Gamma_{\omega}} \right|^{2} \times \frac{s + 2m_{\theta}^{2}}{s\sigma_{\theta}(s)}$$

$$\Pi(s) = \Pi_{\theta}(s) + \Pi_{\mu}(s) + \Pi_{\pi}(s) \left(1 + \frac{2s\epsilon_{\rho\omega}}{M_{\omega}^{2} - s - iM_{\omega}\Gamma_{\omega}} \right) + \Pi_{\omega}(s) + \mathcal{O}(\epsilon_{\rho\omega}^{2})$$

- Recognize G₃(s)
 - $\hookrightarrow \rho$ – ω mixing reproduced
- No $G_4(s)$ without consideration of 4π channel

Step 4: result for the form factor

Relation between $e^+e^- o \pi^+\pi^-$ and the QCD pion form factor

$$\begin{split} \sigma(\mathbf{e}^{+}\mathbf{e}^{-} \rightarrow \pi^{+}\pi^{-}) &= \frac{\pi\alpha^{2}}{3s} \frac{\sigma_{\pi}^{3}(s) \big| F_{\pi}^{V}(s) \big|^{2}}{|1 - \Pi(s)|^{2}} \big| G_{3}(s) \big|^{2} \frac{s + 2m_{e}^{2}}{s\sigma_{e}(s)} \\ \Pi(s) &= \Pi_{e}(s) + \Pi_{\mu}(s) + \Pi_{\pi}(s) \left(1 + \frac{2s\epsilon_{\rho\omega}}{M_{\omega}^{2} - s - iM_{\omega}\Gamma_{\omega}}\right) + \Pi_{\omega}(s) + \mathcal{O}(\epsilon_{\rho\omega}^{2}) \end{split}$$

- Lessons for the fit of $F_{\pi}^{V}(s)$
 - Cleanest input should be pion form factor from experiment (no assumptions on VP),
 but: unitarity/analyticity constraints apply to QCD form factor
 - → need to account for VP in the fit
 - Alternatively: use bare cross section, but need to remove FSR and rely on VP used by respective experiment
 - No further corrections from ρ — γ mixing (would only be relevant when using explicit ρ states, similarly to shifts in ω parameters)
 - ω parameters in $G_3(s)$ are not the physical pole parameters, potentially relevant shifts due to VP

Eidelman-Łukaszuk bound

ππ amplitude

$$t_1 = \frac{\eta_1 e^{2i\delta_1} - 1}{2i\sigma_{\pi}}$$

From unitarity relation Łukaszuk 1973

$$\left(\frac{1-\eta_1}{2}\right)^2 + \eta_1 \sin^2 \delta_{\text{inel}} \leq \frac{1-\eta_1^2}{4} r \qquad \qquad r = \frac{\sigma_{\text{non}\cdot 2\pi}^{l=1}}{\sigma_{\text{e}^+\text{e}^- \to \pi^+\pi^-}}$$

Implies bound Eidelman, Łukaszuk 2003

$$\sin^2 \textcolor{red}{\delta_{\text{inel}}} \leq \frac{1}{2} \big(1 - \sqrt{1 - r^2}\big)$$

- \hookrightarrow shows that $\delta_{\mathsf{inel}} \simeq 0$ below $s_{\pi\omega}$
- Better constraint on δ_{inel} when providing input for inelasticity η_1

