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since several years ETMC has addressed the calculation of the hadronic leading-order quark-connected 
contributions to aμHVP using the twisted-mass lattice setups with Nf = 2 (including also the physical pion 
point) [PRL ’11, PRD ’17] and Nf = 2+1+1 [JHEP ’14] dynamical quarks (Jansen et al.)

recently ETMC has calculated both aμHVP and the isospin-breaking (IB) corrections δaμHVP  for the 
strange and charm quarks [JHEP ’17], adopting the RM123 method [JHEP ’12, PRD ’13] in which the path 
integral is expanded at leading order in both (md - mu) / ΛQCD and αem (RM123 people)

the Rome branch of ETMC (special thanks to D. Giusti and F. Sanfilippo) has extended the calculations 
to the light u- and d-quark contributions for both the lowest order and the leading IB corrections. The 
new results will be presented in this talk and they include an explicit lattice evaluation of Finite Volume 
Effects (FVEs)
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master formula
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Π Q2( ) =HVP	form	factor	appearing	in	the	covariant	decomposition	of	the	HVP	tensor:
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[PRL ’11, JHEP ’14, PRD ’17]

- lattice data for Π(Q2) have been calculated with Nf=2 and Nf=2+1+1 ETMC ensembles, 
  and then interpolated (and extrapolated) according to:

MNBC fit (Jansen et al.)

Thursday, June 21, 18



		

*	ETMC	trick:	rescale	Q	as	Q H
Hphys

	with	H	=	MV , fV ,...

*	simple	chiral	and	continuum	extrapolations:				a
µ
HVP ud( ) = A0+A1Mπ

2 +...( )+Da2
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Figure 3. Light-quark contribution to ahvpµ on
Nf = 2 + 1 + 1 sea.
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Figure 4. Continuum extrapolation of alightµ .

The value at the physical point obtained by the linear fit can be compared to the value

obtained with only two dynamical quark flavours from our earlier lattice QCD analysis [4]

ahvpµ,ud = 5.67(11) · 10−8 (Nf = 2 + 1 + 1)

ahvpµ,ud = 5.72(16) · 10−8 (Nf = 2) (4.1)

yielding fully compatible results. The difference between the error of the two results is that

the Nf = 2+1+1 uncertainty given above is only of statistical nature whereas the Nf = 2

value involves an estimate of systematic effects. The above result has been obtained by

fitting all data from the ensembles listed in table 1 simultaneously as the present quality of

our data does not allow to discriminate lattice artefacts in the light sector. This is shown

in figure 4. Here, we have first extrapolated ahvpµ,ud linearly to the physical point fixing the

value of the lattice spacing. The figure shows that all chirally extrapolated values agree

within the errorbars. We can therefore use a constant extrapolation to zero lattice spacing

giving ahvpµ,ud = 5.72(13) · 10−8 which is compatible with the result quoted in eq. (4.1). We

also performed a combined fit in m2
PS and a2 to all the data in figure 3 yielding a coefficient

of the a2-term compatible with zero. Hence, for the present level of precision of our data,

ahvpµ,ud does not show any significant lattice spacing artefacts.

4.2 The three-flavour contribution, ahvpµ,uds

For the three-flavour contribution we use again H = mV as the hadronic scale in order to

have a consistent redefinition of the muon mass on the lattice. It turns out that this leads

to larger statistical uncertainties for the strange quark contribution than employing the

standard definition of ahvpµ,s . In addition, the dependence of ahvpµ,s on the squared pion mass

appears to be non-linear. However, since the light quark contribution constitutes by far

the largest part of ahvpµ , we still obtain a mild pion mass dependence for ahvpµ,uds as can be

seen when looking at the twisted mass points (upper set of data points with filled symbols)

in figure 5.

In this figure we also include data obtained with different fermion actions naturally

possessing differing cut-off effects from the literature. The orange downward triangles are
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Figure 8. Nf = 2 + 1 + 1 result for ahvpµ .

combined fit involving an m2
PS- and an a2-term of the form stated in eq. (4.2). In this way,

we arrive at the picture shown in figure 8. Here, our result obtained in the continuum

limit and at a physical value of the pion mass, represented by the red triangle, can now be

unambiguously confronted with the corresponding one from a dispersive analysis [26]:

ahvpµ = 6.74(21) · 10−8 (Nf = 2 + 1 + 1)

ahvpµ = 6.91(05) · 10−8 (dispersive analysis) . (4.4)

Comparing the value of the total ahvpµ now a convincing agreement between the two ways

of determining this important quantity is found. However, it needs to be noted that at

this point our result from twisted mass lattice QCD has a significantly larger error than

the one from the dispersive analysis.

Our result also agrees with the value ahvpµ = 6.76 · 10−8 obtained for five flavours with

the help of Dyson-Schwinger equations in [27], where the systematic uncertainty of this

number has been estimated to be about 10%.

4.4 Systematic effects

Systematic effects play a very important role in any lattice calculation and need to be

controlled. We therefore provide in this section a comprehensive discussion of the various

systematic uncertainties appearing in our calculation.

• Finite-size effects

The systematic uncertainty of finite-size effects appears to be small in our com-

putation. The ensembles employed for our result in eq. (4.4) feature values of

3.35 < mPS L < 5.93. Restricting our data to the condition mPS L > 3.8 yields

a total

ahvpµ = 6.73(25) · 10−8

– 14 –

The first error is statistical, the second systematic stemming
from the extrapolation to ðapÞ2 ¼ 0 and the perturbative
subtraction of leading lattice artifacts [79,80] and the third
from the conversion of RI’ to MS at 2 GeV.
With aμl ¼ 0.0009, the ZP value given above and the

lattice spacing value from Eq. (38) we obtain a value for the
average up/down quark mass as follows

mMS
ud ð2 GeVÞ ¼ 3.88ð6Þð21Þð10Þ MeV; ð40Þ

where the first error is statistical, the second from the
combined systematic errors of the lattice scale and ZP, and
the third from the conversion of RI’-MOM to MS at 2 GeV.
Using the ratios μs=μl and μc=μl from Table IV we can

then directly compute also estimates for the strange and
charm quark masses

mMS
s ð2 GeVÞ ¼ 107ð2Þð6Þð3Þ MeV;

mMS
c ð2 GeVÞ ¼ 1.33ð3Þð7Þð3Þ GeV: ð41Þ

Both mud and ms compare well to the quark mass values
determined on the Nf ¼ 2 ETMC ensembles without the
clover term [81]. We can also compare mud and ms to the
Nf ¼ 2 determinations from Refs. [1,64,82–84] averaged
by FLAG [85], namely

mud ¼ 3.6ð2Þ MeV; ms ¼ 101ð3Þ MeV;

which are both in agreement with our determinations. The
values presented above should be taken with some care,
because we did not take the continuum and thermodynamic
limits. An alternative determination of ZP [86,87] might
shed light on the fact that all three quark masses determined
here have consistently larger values than what can be found
in the literature, while the quark mass ratios show good
agreement.

G. Lepton anomalous magnetic moments

In this section, we discuss the leading-order light quark
hadronic contribution to the anomalous magnetic moments
of the electron, the muon and the τ leptons, aude , audμ and audτ ,
respectively. We have performed exactly the same analysis
as described in Ref. [88] for the anomalous magnetic
moment of the muon, only changing the lepton masses in
the numerical integration to the ones of the electron and τ
lepton. We will compare the results obtained at the physical
point with the ones that were obtained from ensembles at
unphysically large pion masses and which were then
extrapolated to the physical point. In Fig. 4 we show the
data for the three aud as a function of M2

π comparing the
results of Refs. [88,89] with the new result at the physical
point.

For our results at unphysically large pion masses we
have used the same redefinition of the vacuum polarization
function as in Refs. [88–91]

ahvpl̄ ¼ α2
Z

∞

0

dQ2

Q2
w
!
Q2

H2

H2
phys

m2
l

"
ΠRðQ2Þ; ð42Þ

with the hadronic scale H ¼ MV , the lowest lying vector
meson state, and ml the lepton mass. H ¼ Hphys ¼ 1

corresponds to the standard definition given in Eq. (28).
When determining the lepton anomalous magnetic

moments the chiral extrapolation to the physical pion mass
can lead to a severe systematic error. This uncertainty is
avoided when using ensembles at the physical point [92].
We have computed the light quark contributions to the
lepton anomalous magnetic moments with the standard
definition Eq. (28) on 800 configurations of the new
physical ensemble. We find full agreement with our
previous results for the light quark contribution originating
from a chiral extrapolation of our Nf ¼ 2 as well as Nf ¼
2þ 1þ 1 results. The extrapolations of the Nf ¼ 2þ 1þ
1 data are depicted in Fig. 4 as dashed lines with shaded
error band, whereas the extrapolated values—also includ-
ing the previous Nf ¼ 2 values from Ref. [90]—are given
in Table IX.
We made a particular effort to quantify the systematic

uncertainties which arise in our calculation for the lepton
anomalous magnetic moments in the data not at the
physical point. These systematic effects originate from

FIG. 4. Comparison of the chiral extrapolation of the light
quark contributions to the three lepton anomalous magnetic
moments obtained from Nf ¼ 2þ 1þ 1 simulations to the
values obtained with the standard definition Eq. (28) at the
physical value of the pion mass (black square). The dark green
diamonds correspond to a ¼ 0.086 fm and L ¼ 2.8 fm and the
circles to a ¼ 0.078 fm, the violet one stands for L ¼ 1.9 fm,
the blue ones for L ¼ 2.5 fm, and the pink for L ¼ 3.7 fm. The
orange triangle shows the value obtained for a ¼ 0.061 fm and
L ¼ 1.9 fm and the light green triangle denotes a ¼ 0.061 fm
and L ¼ 2.9 fm.

FIRST PHYSICS RESULTS AT THE PHYSICAL PION … PHYSICAL REVIEW D 95, 094515 (2017)

094515-13
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for light u- and d-quarks

* the sum (t ≤ Tdata + t > Tdata) turns out to be almost independent on the specific choice of Tdata
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7

ensemble � V/a
4

Ncfg aµsea = aµud aµ� aµ� aµs M⇡(MeV) MK(MeV) M⇡L

A40.40 1.90 403 ⇥ 80 100 0.0040 0.15 0.19 0.02363 317 (12) 576 (22) 5.7

A30.32 323 ⇥ 64 150 0.0030 275 (10) 568 (22) 3.9

A40.32 100 0.0040 316 (12) 578 (22) 4.5

A50.32 150 0.0050 350 (13) 586 (22) 5.0

A40.24 243 ⇥ 48 150 0.0040 322 (13) 582 (23) 3.5

A60.24 150 0.0060 386 (15) 599 (23) 4.2

A80.24 150 0.0080 442 (17) 618 (14) 4.8

A100.24 150 0.0100 495 (19) 639 (24) 5.3

A40.20 203 ⇥ 48 150 0.0040 330 (13) 586 (23) 3.0

B25.32 1.95 323 ⇥ 64 150 0.0025 0.135 0.170 0.02094 259 (9) 546 (19) 3.4

B35.32 150 0.0035 302 (10) 555 (19) 4.0

B55.32 150 0.0055 375 (13) 578 (20) 5.0

B75.32 80 0.0075 436 (15) 599 (21) 5.8

B85.24 243 ⇥ 48 150 0.0085 468 (16) 613 (21) 4.6

D15.48 2.10 483 ⇥ 96 100 0.0015 0.1200 0.1385 0.01612 223 (6) 529 (14) 3.4

D20.48 100 0.0020 256 (7) 535 (14) 3.9

D30.48 100 0.0030 312 (8) 550 (14) 4.7

TABLE I: Values of the valence and sea bare quark masses (in lattice units), of the pion and kaon masses for the

Nf = 2 + 1 + 1 ETMC gauge ensembles used in Ref. [18] and for the gauge ensemble, A40.40 added to improve

the investigation of FVEs. A separation of 20 trajectories between each of the Ncf analysed configurations. The

bare twisted masses µ� and µ� describe the strange and charm sea doublet according to Ref. [21]. The values of the

strange quark bare mass aµs, given for each �, correspond to the physical strange quark mass mphys
s (MS, 2GeV) =

99.6(4.3)MeV and to the mass renormalization constants determined in Ref. [18]. The central values and errors of

pion and kaon masses are evaluated using the bootstrap procedure of Ref. [18].

• the chiral extrapolation performed with fitting functions chosen to be either a polynomial

expansion or a Chiral Perturbation Theory (ChPT) Ansatz in the light-quark mass;

• the choice between the methods M1 and M2, which di↵er by O(a2) e↵ects, used to determine

the mass renormalization constant (RC) Zm = 1/ZP in the RI0-MOM scheme .

ETMC ensembles with Nf = 2+1+1

*** ensembles A40.XX: four volumes @ Mπ ~ 320 MeV and a ~ 0.09 fm

 a = {0.089, 0.082, 0.062} fm 
at

 β = {1.90, 1.95, 2.10}

pion masses in  the range
210 - 450 MeV

isosymmetric setup

 md = mu = mud

 gluon action: 
Iwasaki

fermion action: 
Wilson twisted-mass

unitary in the light sector

OS in the valence strange
and charm sectors
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~ OK for the strange contribution 

   OK for the charm contribution
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Figure 5. Effective mass of the vector correlator V (t) in the case of the strange (left panel) and
charm (right panel) contributions for the ETMC gauge ensembles specified in the insets.

4 Strange and charm contributions: lowest order

Let’s start by considering the evaluation of ahadµ (<) and ahadµ (>) defined in eqs. (3.2)–(3.3)

for various values of the “cut” T data chosen in the range between tmin and tmax given

in table 2.

The results for the strange contribution to ahadµ (<), ahadµ (>) and their sum ahadµ ob-

tained adopting four choices of T data, namely: T data = (tmin+2), (tmin+tmax)/2, (tmax−2)

and (T/2 − 4), are collected in table 3 for illustrative purposes in the case of few ETMC

gauge ensembles.

The separation between ahadµ (<) and ahadµ (>) depends on the specific value of T data, as

it should be, but their sum ahadµ is almost independent of the choice of the value of T data in

the range between tmin and tmax. This is also reassuring of the fact that the value of ahadµ is

not contaminated significantly by the presence of backward signals in the correlator V (t).

In the case of the charm contribution the value of ahadµ (>) is always several orders of

magnitude smaller than ahadµ (<) and the latter turns out to be the same for all the four

choices of T data.

Note that for T data = T/2−4 the contribution ahadµ (>), which depends on the analytic

representation (3.3), does not exceed ≃ 1.2% of the total value ahadµ even at the smallest

value of the time extension T .

In what follows all the four choices of T data will be employed in the various branches of

our bootstrap analysis. The corresponding systematics is largely sub-dominant with respect

to the other sources of uncertainties and it will not be given separately in the error budget.

The results obtained for the strange and charm contributions to ahadµ are shown by

the empty markers in figure 6. We observe a mild dependence on the light-quark mass,

being driven only by sea quarks, and also small residual FSEs visible only in the case of the

– 13 –
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strange contribution:

charm contribution:

		

a
µ

s phys( ) = 53.1±1.6stat+ fit ±1.5input ±1.3a2 ±0.2FVE ±0.1chiral( ) ⋅10−10

= 53.1±2.5( ) ⋅10−10

		

a
µ

c phys( ) = 14.75±0.42stat+ fit ±0.36input ±0.10a2 ±0.03FVE ±0.01chir( ) ⋅10−10

= 14.75±0.56( ) ⋅10−10

		

a
µ
c phys( ) = 14.42±0.39( ) ⋅10−10 				 HPQCD	'14,	N f =2+1+1⎡⎣ ⎤⎦

= 14.3±0.2±0.1( ) ⋅10−10 CLS/Mainz	'17,	N f =2⎡⎣ ⎤⎦

= 14.7±0.1±0.1( ) ⋅10−10 BMW	'17,	N f =2+1+1⎡⎣ ⎤⎦

= 14.3±0.7±0.1( ) ⋅10−10 RBC/UKQCD	'18,	N f =2+1⎡⎣ ⎤⎦

		

a
µ
s phys( ) = 53.41±0.59( ) ⋅10−10 				 HPQCD	'14,	N f =2+1+1⎡⎣ ⎤⎦

= 53.1±0.9
−0.3
+0.1( ) ⋅10−10 				 RBC/UKQCD	'16,	N f =2+1⎡⎣ ⎤⎦

= 51.1±1.7±0.4( ) ⋅10−10 CLS/Mainz	'17,	N f =2⎡⎣ ⎤⎦

= 53.7±0.2±0.4( ) ⋅10−10 BMW	'17,	N f =2+1+1⎡⎣ ⎤⎦

= 53.2±0.4±0.3( ) ⋅10−10 RBC/UKQCD	'18,	N f =2+1⎡⎣ ⎤⎦

***** nice agreement *****

[ETMC ’17]

[ETMC ’17]
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our aim is to construct a representation of the vector correlator that allows to correct the FVEs 
directly on the correlator itself

*

- the starting point is the π-π contribution in a finite box of size L [Lüscher ’91]:

		
V
ππ
t( ) = νn An

2

n
∑ e−ωnt 																												ωn =2 M

π
2 +kn

2 , 				n=1,2,...

		
kn : 				δ11 kn( )+φ knL

2π

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟=nπ δ11 = scattering phase shift (p-wave, I=1)

φ = known kinematical function

		
An

2
: 										 F

π
ωn( )

2
= kn

∂δ11 kn( )
∂kn

+
knL
2π

ʹφ
knL
2π

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

3πωn
2

2kn
5
νn An

2
[Meyer ’11, Francis et al. ’13]

		 

tanφ z( ) =− 2π 2z
!m2 −z2( )

−1

!m∈"3
∑

- need of a realistic model for the time-like pion form factor 
		
F
π
ω( ) = Fπ ω( ) eiδ11 (Watson theorem)

time-like pion form factor 

		 
νn = 	number	of	vectors	

!z ∈"3 	with	 !z
2
=n
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- Gounaris-Sakurai (GS) parameterization [GS ’68]

		

F
π
ω( ) = ωk3

F0
cotgδ11 − i

k3

ω
cotgδ11 =k

2h ω( )−kρh Mρ( )+bρ k2−kρ2( )

		

b
ρ
=−

24π
g
ρππ
2

−h M
ρ( )−2

k
ρ
2

M
ρ

ʹh M
ρ( )

h ω( ) = 2
π
k
ω
logω+2k

2M
π

ʹh ω( ) = 1
πω

1+
2M

π
2

kω
logω+2k

2M
π

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

F0 =−
M

π
2

π
−k

ρ
2h M

ρ( )−bρ
M

ρ
2

4

- the GS parameterization depends on two variables: 

		Mρ
			and			g

ρππ

- reasonable description of experimental 
  data from e+e-

- it does not contain ρ-ω mixing 

OK for an isosymmetric 
lattice setup		

Γ
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=
g
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2
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- (isovector) π-π contribution is known to be OK for low-lying states (around the ρ-resonance) for 
  large time distances (t > 1 fm)

- we want a representation of the correlator also at low and intermediate time distances
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Figure 2. The vector correlator V (t)/q2f (in physical units) in the case of the light (left panel),
strange (middle panel) and charm (right panel) contributions for the ETMC gauge ensembles spec-
ified in the inset, which share an approximate common value of the light-quark mass mℓ ≃ 12MeV
and differ in the values of the lattice spacing. The dashed lines represent the mass-indepedent pQCD
prediction (3.22), while the solid line in the right panel is the pQCD prediction (3.21) calculated
for an on-shell charm quark mass equal to mc = 1.253 GeV.

Finally, it is interesting to estimate the contribution to ahadµ coming from values

of Q2 larger than Q2
max ≃ 1/a2, which for our lattice setup is always larger than

4GeV2. Using the pQCD prediction (3.17) for the large Q2-behavior of ΠR(Q2), one gets:

ahadµ (Q2 > 4 GeV2) ≃ 1.3, 0.11, 0.06 (in units of 10−10) in the case of the light, strange

and charm contributions, respectively. The above findings represent only a small fraction

of the uncertainties of the present lattice estimates of the three contributions to ahadµ (see

refs. [13–15, 19]).

Alternatively we can check the change induced in the kernel function f(t) by cutting

the upper integration limit in eq. (3.4) to ωmax = Qmax/mµ ≃ 1/(amµ). Since in our lattice

setup ωmax ! 20, the kernel function f(t) changes at most by one part over ≃ 106 at small

t in the case of the muon.

3.4 Ground-state identification

Our numerical simulations of the vector correlator V (t) have been carried out in the context

of a more general project aiming at the determination of the e.m. and strong IB corrections

to pseudoscalar meson masses and leptonic decay constants [43]. In this project the bilinear

operators were constructed adopting opposite values of the Wilson r-parameter. Thus,

instead of eq. (3.5) the evaluation of the vector correlator has been carried out using the

following local current:

Jµ(x) = ZA qf ψ̄f ′(x)γµψf (x) , (3.23)

where ψf ′ and ψf represent two quarks with the same mass and charge, but regularized

with opposite values of the Wilson r-parameter, i.e. rf ′ = −rf . Being at maximal twist

the current (3.23) renormalizes multiplicatively with the renormalization constant ZA of

the axial current.

The choice (3.23) differs from the one given by eq. (3.5) by lattice artefacts of order

O(a2) and by the absence of disconnected insertions. The first point is illustrated in

– 10 –

* in JHEP ’17 we observed the onset of quark-hadron duality [SVZ ’79]

* the matching with pQCD (including quark mass effects) is present up to t ~ 1 fm

***** the sum of the contributions of intermediate and highly excited states is dual to pQCD *****

massless limit at LO
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our	representation:				V ud( ) t( ) =Vdual t( )+Vππ t( )

		

Vdual t( )→
1

24π 2
ds

sdual

∞

∫ s e− s tRpQCD s( ) = 59
1
8π 2

ds
sdual

∞

∫ s e− s t 1−
4mud

2

s
1+
2mud

2

s

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟+O αs( )

=
5
9
sdual
3/2

2π 2

1

sdualt( )
3
e− sdualt 1+ sdualt +

1
2
sdualt

2
⎛

⎝
⎜

⎞

⎠
⎟+O

mud
4

sdual
2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

		
Vdual t( ) =

5
18π 2

Rdual
t3

e− Mρ+Edual( )t 1+ M
ρ
+Edual( )t +12 M

ρ
+Edual( )

2
t2

⎡

⎣
⎢

⎤

⎦
⎥

		
sdual = 	effective	threshold	=	 Mρ

+Edual( )
2
	with	Edual ~ΛQCD

		
introduce	a	multiplicative	parameter:					Rdual 	 = 	1	+ 	O αs( )+O a2( ) 								 see	later	on( )

		

*	a	total	of	four	parameters:				M
ρ
	and	g

ρππ
			in	the	π -π 	term

				Rdual 	and	Edual 	in	the	dual	term 		

more	precisely
M

ρ
M

π
	and	Edual Mπ
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accurate reproduction of the 
vector (ud) correlators for 
all the ETMC ensembles

for t ≥ 0.2 fm

(χ2/d.o.f. < 1)
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fitting procedure entirely in 
lattice units

knowledge of the lattice 
spacing not required

4 energy levels for the π-π 
contribution are sufficient 

for all the ETMC ensembles
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* nice agreement (within 1σ) for aμHVP(ud) calculated using either the lattice points of the vector 
   correlator (direct) or its dual + π-π representation
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dashed	lines:				Pi =Pi
L=∞( ) 1+FPi

M
π
2

16π 2 f
π
2

e−MπL

M
π
L( )

3/2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
								Pi =Rdual ,Edual ,Mρ

,g
ρππ

ETMC ensembles A40.XX: Mπ ~ 320 MeV and a ~ 0.09 fm

leading exponential correction in ChPT for Mπ2
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* infinite volume limit:

		
Vdual t( ) L→∞

⎯ →⎯
5

18π 2

R
dual

L=∞( )

t3
e
− M

ρ

L=∞( )+E
dual

L=∞( )⎡

⎣
⎢

⎤

⎦
⎥t
1+ M

ρ

L=∞( ) +E
dual

L=∞( )⎡
⎣⎢

⎤
⎦⎥t +

1
2
M

ρ

L=∞( ) +E
dual

L=∞( )⎡
⎣⎢

⎤
⎦⎥
2

t2
⎧
⎨
⎩

⎫
⎬
⎭

		
V
ππ
t ;L( ) = νn An

2

n
∑ e−ωnt 	 L→∞

⎯ →⎯
1

48π 2
dωω2

2Mπ

∞

∫ 1−
4M

π
2

ω2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ Fπ

L=∞( ) ω( )
2

e−ωt [Meyer ’11]

		evaluated	with	Mπ
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HVP 	from	π -π 	contribution	only
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HVP 	from	dual	+	π -π

in order to correct properly for FVEs it is important to use 
in the (L=∞) formula the values of the pion mass and of the 
dual and π-π parameters estimated in the infinite volume

		

FVE	correction

a
µ
HVP ∞( ) =aµHVP L( )+ΔFVEaµ

HVP

- large corrections from π-π contribution, 
   but some residual FVE is still present

- no residual FVE using the dual + π-π 
  representation

FVEs on Mπ have been analyzed accurately in NPB ’14
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combined fits

- for each ETMC ensemble the values of the four parameters in the infinite volume limit can be obtained
  and used to evaluate the FVEs on aμHVP(ud)
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FVE	correction:															a

µ
HVP ∞( ) =aµHVP L( )+ aµHVP ∞( )−aµHVP L( )⎡

⎣
⎤
⎦dual +π−π

- after applying the FVE correction the mud dependence of aμHVP(ud) is more pronounced (both with and 
  without the ELM procedure for the muon mass)
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interacting π-π:    dual + π-π representation [note that ΔaμHVP(L) depends approximately on MπL only]

[Francis et al. ’13]

FVE correction @ a2 → 0

[Aubin et al. ’16, Bijnens&Relefors ’16]
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chiral and continuum limit extrapolations
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*** in the chiral limit mud → 0 the polarization function ΠR(Q2) is not analytic at Q2=0 and aμHVP(ud) is logarithmically divergent ***

		
a
µ
HVP ud( ) = a

µ
HVP⎡

⎣
⎤
⎦
NLO

+ a
µ
HVP⎡

⎣
⎤
⎦L9 ,C93

NNLO
+A0+A1mud

⎧
⎨
⎩

⎫
⎬
⎭
1+D0a

2+D1a
2mud( )

log(mud) independent on LECs dependence on two LECs
Golowitch&Kambor ’95, Amoros et al ’00, ... 
Bijnens&Relefors ’16, Golterman at al. ’17

		

L9 0.77GeV( ) =0.00273 143( )
C93 0.77GeV( ) =−0.0136 20( )GeV −2

		

L9 0.77GeV( ) =0.00593 43( )
C93 0.77GeV( ) =−0.0154 4( )GeV −2our results: Goltermann et al. ’17:
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including 
NLO ChPT

including
NNLO ChPT free logs

625.3 (9.1) 635.8 (13.1) 613.1 (13.2)

615.6 (7.2) 610.0 (13.4) 616.4 (17.5)

	
m

µ
=m

µ
phys

	
m

µ
ELM =m

µ
phys Mρ

M
ρ
phys

		
*	we	have	tried	also	a	fit	with	free	logs:				a

µ
HVP ud( ) = A0+A0

log logmud( ) 1+A1mud +A1
logmud logmud( ) 1+D0a2+D1a2mud( )

		
results	for	a

µ
HVP ud( ) 				 in	units	of	10−10( )

		

"ETMC"	average:				a
µ
HVP ud( ) =619.4 12.7( )stat+ fit 8.7( )syst ⋅10

−10

=619.4 15.4( ) ⋅10−10
		

"ETMC"	average

x =
1
N

xi
i=1

N

∑

σ 2 =
1
N

σ i
2+
1
N

xi − x( )
i=1

N

∑
i=1

N

∑
2

		

ETMC	Nf =2		@		Mπ
phys

a
µ
HVP ud( ) =552 39( ) ⋅10−10
a~0.091fm,	L~4.4	fm

M
π
L~3.0

		 
a
µ
HVP ud( )∼610 40( ) ⋅10−10

FVE correction 
(~ 11%)

		
6.8( )chir . 5.4( )disc . ...( )FVE

to be estimated, but 
expected to be small
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an alternative route is based on our (dual + π-π) representation of the vector correlator
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dual + π−π representation
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d)
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010
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ud
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results in the continuum and
infinite volume limits

physical point

m
µ
 = m

µ

phys

take the infinite volume formula and use the (dual + π-π) parameters evaluated in the limits L → ∞ 
and a2 → 0 as a function of the light-quark mass

		
a
µ
HVP ud( ) =626.2 8.2( ) ⋅10−10

		
final	ETMC	estimate:				a

µ
HVP ud( ) =622.8 12.8( ) ⋅10−10

		
a
µ
HVP ud( ) =635.8 16.1( ) ⋅10−10

the blue points do 
not know anything 

about ChPT

note the sensitivity 
to mud around the 

physical point

- removal of lattice artifacts directly on the vector correlator
- light-quark mass dependence of the vector correlator
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u- and d-quark connected terms only

ETMC 18 differs by 1.4σ from HPQCD 16 and RBC/UKQCD 18, and by 1.1σ from BMW 17
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ETMC 14

up to two days ago ... now ...
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leading-order IB corrections δaμHVP 

20

V. STRANGE AND CHARM CONTRIBUTIONS: E.M. CORRECTIONS

Let’s now turn to the e.m. corrections at leading order in ↵em to a
had
µ , which using the expansion

method of Ref. [24] require the evaluation of the self-energy, exchange, tadpole, pseudoscalar and

scalar insertion diagrams depicted in Fig. 8.
where m ud ¼ ðm d þ m uÞ=2 is the bare isosymmetric light quark mass. In the case of the neutral pion we obtain

The sea quark propagators have been drawn in blue (and with a different line) and the isosymmetric vacuum polarization
diagrams have not been displayed explicitly. By combining the previous expressions we find the elegant formula

All the isosymmetric vacuum polarization diagrams cancel
by taking the difference of!M!þ and!M!0 together with
the disconnected sea quark loop contributions explicitly
shown in Eqs. (64) and (65). Note, in particular, the can-
cellation of the corrections/counterterms corresponding to
the variation of the symmetric up-down quark mass m ud %
m 0

ud and to the variation of the strong coupling constant
g2s % ðg0sÞ2. This is a general feature: at first order of the
perturbative expansion in "̂em and m̂ d % m̂ u, the isosym-
metric corrections coming from the variation of the stong
gauge coupling (the lattice spacing), of m ud and of the
heavier quark masses do not contribute to observables that

vanish in the isosymmetric theory, like the mass splitting
M!þ %M!0 . Furthermore, as already stressed, the electric
charge does not need to be renormalized at this order and,
for all these reasons, the expression for the pion mass
splitting can be considered a ‘‘clean’’ theoretical prediction.
On the other hand, the lattice calculation of the discon-

nected diagram present in Eq. (66) is a highly nontrivial
numerical problem and we shall neglect this contribution
in this paper. Relying on the same arguments that lead to
the derivation of the flavor SUð3Þversion of Dashen’s
theorem [see Eq. (39)], it can be shown that the neutral
pion mass has to vanish in the limit m̂ u ¼ m̂ d ¼ 0 for
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(a) (b) (c) (d) (e)

FIG. 8: Fermionic connected diagrams contributing to the e.m. corrections to a
had
µ : exchange (a), self energy

(b), tadpole (c), pseudoscalar (d) and scalar (e) insertions. Solid lines represent quark propagators.

For each quark flavor f one has

�V (t) ⌘ �V
self (t) + �V

exch(t) + �V
tad(t) + �V

PS(t) + �V
S(t) (41)

with

�V
self (t) + �V

exch(t) =
4⇡↵em

3

X

i=1,2,3

X

~x,y1,y2

h0|T

(
J
†
i (~x, t)

X

µ

J
C
µ (y1)J

C
µ (y2) Ji(0)

)
|0i , (42)

�V
tad(t) =

4⇡↵em

3

X

i=1,2,3

X

~x,y

h0|T

(
J
†
i (~x, t)

X

⌫

T⌫(y) Ji(0)

)
|0i , (43)

�V
PS(t) =

�m
crit
f

3

X

i=1,2,3

X

~x,y

h0|T
n
J
†
i (~x, t) i f (y)�5 f (y) Ji(0)

o
|0i , (44)

�V
S(t) = �

mf

3ZmZf

X

i=1,2,3

X

~x,y

h0|T
n
J
†
i (~x, t)  f (y) f (y) Ji(0)

o
|0i , (45)

where J
C
µ (y) and T⌫(y) are given in Eqs. (18) and (20), respectively. In Eq. (41) �mcrit

f is the

e.m. shift of the critical mass for the quark flavor f , while Zm and Zf are related to the mass

renormalization constants (RCs) in QCD and QCD+QED. For our maximally twisted-mass setup

�m
crit
f has been determined in Ref. [25], while 1/Zm = ZP , where ZP is the RC of the pseudoscalar

density evaluated in Ref. [29]. For 1/Zf we use the perturbative result at leading order in ↵em in

the MS scheme, given by [36]

1

Zf
(MS, µ) =

q
2
f

16⇡2
[6log(aµ)� 22.596] , (46)

(for each quark flavor f)

		qf
sea =0

quenched QED

[ETMC ’17]

* RM123 approach: the path integral is expanded at leading order in both (md - mu) / ΛQCD and αem

		 

δa
µ
HVP =δa

µ
HVP QCD( )+δaµHVP QED( )

δa
µ
HVP QCD( ) =4αem

2 !f t( )δVQCD t( )
t=0

∞

∑ 																														 u-	and	d-quark	only( )

δa
µ
HVP QED( ) =4αem

2 !f t( )
t=0

∞

∑ qf
4δVf

QED t( )
f =u ,d ,s ,c
∑ 												 quark	connected	terms	only( )

	
δVQED t( )→δV exch t( )+δV self t( )+δV tad t( )+δV PS t( )+δV S t( )+δV ZA t( )

		 
δVQCD t( )→ md −mu( ) ZP3 0

!x ,y
∑ T Ji

† !x ,t( ) qd2ψdψd −qu
2ψuψu

⎡
⎣

⎤
⎦ Ji 0( ){ }

i=1,2,3
∑ 0Strong IB: (scalar density insertions)

QED:

e.m. effect on the RC of the 
local (twisted) vector current
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- contributions with different signs

- partial cancellations among the various terms

- total sum smaller than the separate terms

* strange and charm quark contributions:

J
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E
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Figure 9. The time behavior of the integrand function δahadµ (t) in the r.h.s. of eqs. (5.11)–(5.12) in
the case of the strange (left panel) and charm (right panel) quarks in units of 10−10, obtained for the
ETMC gauge ensemble D20.48. The labels “self”, “tad + PS”, “exch”, “scalar” and “ZA” indicate
the contributions of the diagrams 8b, 8c+8d, 8a, 8e and the one generated by the QED effect in the
RC ZA of the local vector current at leading order in αem (see eq. (5.9)) with Z(fact)

A = 0.9. The
label “total” corresponds to the sum of all the contributions.

that all the quantities δV , δZV and δMV are proportional to αemq2f , which make δahadµ

proportional to α3
emq

4
f .

The time dependence of the integrand function in the r.h.s. of eqs. (5.11)–(5.12) is

shown in figure 9 in the case of the ETMC gauge ensemble D20.48. The contributions

coming from the various diagrams of figure 8 as well as from the additional term (5.9) are

determined quite precisely and are characterized by different signs. Partial cancellations

among the various contributions occur in the total sum, which turns out to be smaller than

each individual contributions. Thus, even a 10% uncertainty on the RC δZA may have a

larger impact on the final uncertainty of δahadµ , as it will be shown later on.

The results for the strange contribution to δahadµ (<), δahadµ (>) and their sum δahadµ ,

obtained adopting the four choices of T data, namely: T data = (tmin + 2), (tmin + tmax)/2,

(tmax − 2) and (T/2− 4), are collected in table 4 for some of the ETMC gauge ensembles.

As in the case of the lowest-order terms ahadµ (<) and ahadµ (>), we find that the separa-

tion between δahadµ (<) and δahadµ (>) depends on the specific value of T data, as it should be,

but their sum δahadµ is largely independent of the choice of the value of T data in the range

between tmin and tmax within the statistical uncertainties. As in the case of the lowest-order

term, the contribution δahadµ (>), which depends on the analytic representation (5.12), is

significantly reduced at T data = T/2−4, where it does not exceed the statistical uncertainty

of δahadµ .

In the case of the charm contribution the value of δahadµ (>) is always several orders of

magnitude smaller than δahadµ (<) and the latter turns out to be the same for all the four

choices of T data.

– 20 –

	
δVQED t( )→δV exch t( )+δV self t( )+δV tad t( )+δV PS t( )+δV S t( )+δV ZA t( )

		

@M
π
phys

δa
µ
HVP s( ) =−0.018 11( ) ⋅10−10

δa
µ
HVP c( ) =−0.030 13( ) ⋅10−10 		

[ETMC ’17]
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light-quark (connected) contributions
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Mπ ~ 260 MeV, a ~ 0.06 fm

strong IB

QED

		
md −mu( ) MS ,2GeV( ) =2.38 18( )MeV

see RM123 ’17 (arXiv:1704.0656)

strong IB is dominant
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@M
π
phys:				

δa
µ
HVP ud( )

a
µ
HVP ud( )

=0.011 3( )

δa
µ
HVP ud( ) =6.9 1.9( ) ⋅10−10

		

δa
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HVP ud( )

a
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=δ0 1+δ1mud +δ1
logmud logmud +Da

2+FVE( )
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HVP ud( )

a
µ
HVP ud( )

= ʹδ0 1+ ʹδ1mud + ʹδ2mud
2 + ʹD a2+FV ʹE( )

		 

FVE = F
L3
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FVE = !Fe−MπL

log fit

quadratic fit
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~ 80% due to strong IB

(quark connected only and qQED)

preliminary

expected in the case of 
neutral mesons with 
vanishing charge radius

[ETMC ’17]
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δa
µ
HVP ud;	conn.,	qQED( ) =6.9 1.9( ) ⋅10−10 				 ETMC	18( )

δa
µ
HVP ud( ) =7.8 5.1( ) ⋅10−10 				 BMW	17( )

δa
µ
HVP ud( ) =9.5 10.2( ) ⋅10−10 				 RBC/UKQCD	18( )

δa
µ
HVP ud;	sIB( ) =9.0 4.5( ) ⋅10−10 				 FNAL/HPQCD/MILC	18( )

		estimate	from	π
0γ ,ηγ , ρ−ω 	mixing,M

π ±

1 disconnected QED diagram

strong IB only

quark connected only and qQED

		

				ETMC	18		
a
µ
HVP =685.6 13.8( ) ⋅10−10

				 ud( ) =622.8 12.8( ) ⋅10−10 				
s( ) =53.1 2.5( ) ⋅10−10
c( ) =14.75 0.56( ) ⋅10−10
IB( ) =6.9 1.9( ) ⋅10−10

disc( ) =−12 4( ) ⋅10−10 e+e- data
100%

lattice data
100%

average of BMW 17 and RBC/UKQCD 18 estimates 550 600 650 700 750

a
µ

HVP * 1010

ETMC 18
RBC/UKQCD 18
BMW 17
CLS/Mainz 17
HPQCD 16

KNT18
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CONCLUSIONS

updated ETMC result for the hadronic leading-order (quark connected) contribution to aμHVP 
obtained using a representation of the vector correlator, which allows to evaluate the FVEs on 
the lattice and to extrapolate to the physical pion point 

new ETMC result for the isospin-breaking correction δaμHVP adopting the RM123 method, in 
which the path integral is expanded at leading order in both (md - mu) / ΛQCD and αem

		
δa

µ
HVP udsc;	conn.,	qQED( ) =6.9 1.9( ) ⋅10−10

		
a
µ
HVP udsc;	conn.( ) =690.7 13.1( ) ⋅10−10

TO DO ...

- use of the new ETMC lattice setup @ the physical pion point 

- evaluation of the quark disconnected terms and removal of the qQED approximation

- study of FVEs in the strong and QED isospin breaking corrections

*

*

an accurate representation of the vector correlator allows to remove the lattice artifacts 
and to get its light-quark mass dependence

this represents a good strategy to achieve a robust and trustworthy control of the 
lattice prediction for aμHVP below the percent level

***

***
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on-going work

Quark-disconnected contribution
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⇧
0
µ⌫(x , y) = hJ0

µ(x) J
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a = 0.078 fm, m⇡ = 393MeV, L = 2.5 fm, m⇡L = 5.0, up-down contribution

1548 ⇥ 24 + 4996 ⇥ 48 gauge configurations ⇥ stochastic volume sources

Marcus Petschlies (HISKP) HVP @ ETMC g � 2 Initiative 9 / 26

from Marcus’ talk at the FNAL workshop (2017) 
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am

µ
ELM =aMV

m
µ

phys

MV
phys

Effective Lepton Mass (ELM) procedure

		
instead	of	am

µ

phys :

- no need of the value of the lattice spacing (no sensitivity to the lattice scale setting)

- sensitivity to the precision of the vector meson mass aMV

much better precision with the ELM procedure

[ETMC ’14]
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fits including NLO and NNLO ChPT
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u- and d-quark (connected) vector correlator @ Mπphys 
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leading-order IB corrections

20

V. STRANGE AND CHARM CONTRIBUTIONS: E.M. CORRECTIONS

Let’s now turn to the e.m. corrections at leading order in ↵em to a
had
µ , which using the expansion

method of Ref. [24] require the evaluation of the self-energy, exchange, tadpole, pseudoscalar and

scalar insertion diagrams depicted in Fig. 8.
where m ud ¼ ðm d þ m uÞ=2 is the bare isosymmetric light quark mass. In the case of the neutral pion we obtain

The sea quark propagators have been drawn in blue (and with a different line) and the isosymmetric vacuum polarization
diagrams have not been displayed explicitly. By combining the previous expressions we find the elegant formula

All the isosymmetric vacuum polarization diagrams cancel
by taking the difference of!M!þ and!M!0 together with
the disconnected sea quark loop contributions explicitly
shown in Eqs. (64) and (65). Note, in particular, the can-
cellation of the corrections/counterterms corresponding to
the variation of the symmetric up-down quark mass m ud %
m 0

ud and to the variation of the strong coupling constant
g2s % ðg0sÞ2. This is a general feature: at first order of the
perturbative expansion in "̂em and m̂ d % m̂ u, the isosym-
metric corrections coming from the variation of the stong
gauge coupling (the lattice spacing), of m ud and of the
heavier quark masses do not contribute to observables that

vanish in the isosymmetric theory, like the mass splitting
M!þ %M!0 . Furthermore, as already stressed, the electric
charge does not need to be renormalized at this order and,
for all these reasons, the expression for the pion mass
splitting can be considered a ‘‘clean’’ theoretical prediction.
On the other hand, the lattice calculation of the discon-

nected diagram present in Eq. (66) is a highly nontrivial
numerical problem and we shall neglect this contribution
in this paper. Relying on the same arguments that lead to
the derivation of the flavor SUð3Þversion of Dashen’s
theorem [see Eq. (39)], it can be shown that the neutral
pion mass has to vanish in the limit m̂ u ¼ m̂ d ¼ 0 for
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(a) (b) (c) (d) (e)

FIG. 8: Fermionic connected diagrams contributing to the e.m. corrections to a
had
µ : exchange (a), self energy

(b), tadpole (c), pseudoscalar (d) and scalar (e) insertions. Solid lines represent quark propagators.

For each quark flavor f one has

�V (t) ⌘ �V
self (t) + �V

exch(t) + �V
tad(t) + �V

PS(t) + �V
S(t) (41)

with

�V
self (t) + �V

exch(t) =
4⇡↵em

3

X

i=1,2,3

X

~x,y1,y2

h0|T

(
J
†
i (~x, t)

X

µ

J
C
µ (y1)J

C
µ (y2) Ji(0)

)
|0i , (42)

�V
tad(t) =

4⇡↵em

3

X

i=1,2,3

X
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h0|T

(
J
†
i (~x, t)

X
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T⌫(y) Ji(0)

)
|0i , (43)

�V
PS(t) =

�m
crit
f

3

X
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X
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h0|T
n
J
†
i (~x, t) i f (y)�5 f (y) Ji(0)

o
|0i , (44)

�V
S(t) = �

mf

3ZmZf

X

i=1,2,3

X

~x,y

h0|T
n
J
†
i (~x, t)  f (y) f (y) Ji(0)

o
|0i , (45)

where J
C
µ (y) and T⌫(y) are given in Eqs. (18) and (20), respectively. In Eq. (41) �mcrit

f is the

e.m. shift of the critical mass for the quark flavor f , while Zm and Zf are related to the mass

renormalization constants (RCs) in QCD and QCD+QED. For our maximally twisted-mass setup

�m
crit
f has been determined in Ref. [25], while 1/Zm = ZP , where ZP is the RC of the pseudoscalar

density evaluated in Ref. [29]. For 1/Zf we use the perturbative result at leading order in ↵em in

the MS scheme, given by [36]

1

Zf
(MS, µ) =

q
2
f

16⇡2
[6log(aµ)� 22.596] , (46)

8

B. Local versus conserved vector currents on the lattice

The vector correlator V (t) can be calculated using either the lattice conserved vector current

J
C
µ (x) or the local vector current Jµ(x). The latter needs to be renormalized and in our twisted-

mass setup the local vector current for each quark flavor f is given by

Jµ(x) = qf ZV  ̄f (x)�µ f (x) , (17)

where, being at maximal twist, the renormalization is multiplicative through the renormalization

constant ZV .

The variation of the lattice action with respect to a vector rotation ↵V (x) of the quark fields,

i.e.  (x) ! e
iqf↵V (x)

 (x) and  (x) !  (x) e
�iqf↵V (x) (for any quark flavor f), provides the

relevant Ward-Takahashi identity for the conserved current JC
µ expressed in terms of the backward

lattice derivative. In our twisted-mass setup one has

J
C
µ (x) = qf

1

2

⇥
 ̄f (x)(�µ � i⌧

3
�5)Uµ(x) f (x+ aµ̂)

+  ̄f (x+ aµ̂)(�µ + i⌧
3
�5)U

†
µ(x) f (x)

i
. (18)

According to the vector Ward-Takahashi identity the polarization tensor hJC
µ (x)JC

⌫ (y)i is not trans-

verse because of the contact term arising from the vector rotation of the conserved current JC
⌫ (y),

which generates the backward lattice derivative of the tadpole operator and is power divergent as

1/a3. Thus, in the case of two conserved currents the transverse HVP tensor is defined as

⇧CC
µ⌫ (x, y) ⌘ hJ

C
µ (x)JC

⌫ (y)i �
1

a3
�µ⌫�xyhT⌫(y)i , (19)

where the tadpole operator is explicitly given by

T⌫(y) = q
2
f
1

2

⇥
 ̄f (y)(�⌫ � i⌧

3
�5)U⌫(y) f (y + a⌫̂)

�  ̄f (y + a⌫̂)(�⌫ + i⌧
3
�5)U

†
⌫ (y) f (y)

i
. (20)

On the contrary, in the case of one conserved and one local currents there is no contact term

because the vector rotation of the local current (17) is zero. One gets
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which is transverse only with respect to the µ index (i.e., @bµ⇧
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µ⌫ (x, y) = 0, where @bµ is the backward

lattice derivative).

In the case of two local currents the polarization tensor hJµ(x)J⌫(y)i is not transverse. The

mixing pattern of the product of two local currents with all possible operators with equal and lower
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V. STRANGE AND CHARM CONTRIBUTIONS: E.M. CORRECTIONS

Let’s now turn to the e.m. corrections at leading order in ↵em to a
had
µ , which using the expansion

method of Ref. [24] require the evaluation of the self-energy, exchange, tadpole, pseudoscalar and

scalar insertion diagrams depicted in Fig. 8.
where m ud ¼ ðm d þ m uÞ=2 is the bare isosymmetric light quark mass. In the case of the neutral pion we obtain

The sea quark propagators have been drawn in blue (and with a different line) and the isosymmetric vacuum polarization
diagrams have not been displayed explicitly. By combining the previous expressions we find the elegant formula

All the isosymmetric vacuum polarization diagrams cancel
by taking the difference of!M!þ and!M!0 together with
the disconnected sea quark loop contributions explicitly
shown in Eqs. (64) and (65). Note, in particular, the can-
cellation of the corrections/counterterms corresponding to
the variation of the symmetric up-down quark mass m ud %
m 0

ud and to the variation of the strong coupling constant
g2s % ðg0sÞ2. This is a general feature: at first order of the
perturbative expansion in "̂em and m̂ d % m̂ u, the isosym-
metric corrections coming from the variation of the stong
gauge coupling (the lattice spacing), of m ud and of the
heavier quark masses do not contribute to observables that

vanish in the isosymmetric theory, like the mass splitting
M!þ %M!0 . Furthermore, as already stressed, the electric
charge does not need to be renormalized at this order and,
for all these reasons, the expression for the pion mass
splitting can be considered a ‘‘clean’’ theoretical prediction.
On the other hand, the lattice calculation of the discon-

nected diagram present in Eq. (66) is a highly nontrivial
numerical problem and we shall neglect this contribution
in this paper. Relying on the same arguments that lead to
the derivation of the flavor SUð3Þversion of Dashen’s
theorem [see Eq. (39)], it can be shown that the neutral
pion mass has to vanish in the limit m̂ u ¼ m̂ d ¼ 0 for
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FIG. 8: Fermionic connected diagrams contributing to the e.m. corrections to a
had
µ : exchange (a), self energy

(b), tadpole (c), pseudoscalar (d) and scalar (e) insertions. Solid lines represent quark propagators.

For each quark flavor f one has
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where J
C
µ (y) and T⌫(y) are given in Eqs. (18) and (20), respectively. In Eq. (41) �mcrit

f
is the

e.m. shift of the critical mass for the quark flavor f , while Zm and Zf are related to the mass

renormalization constants (RCs) in QCD and QCD+QED. For our maximally twisted-mass setup

�m
crit

f
has been determined in Ref. [25], while 1/Zm = ZP , where ZP is the RC of the pseudoscalar

density evaluated in Ref. [29]. For 1/Zf we use the perturbative result at leading order in ↵em in

the MS scheme, given by [36, 37]
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2
f

4⇡
[6log(aµ)� 22.596] , (46)
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* separation of QCD and QED effects is prescription dependent [see Gasser et al. ’03]

- mass anomalous dimensions in QCD and QCD+QED are different
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where m ud ¼ ðm d þ m uÞ=2 is the bare isosymmetric light quark mass. In the case of the neutral pion we obtain

The sea quark propagators have been drawn in blue (and with a different line) and the isosymmetric vacuum polarization
diagrams have not been displayed explicitly. By combining the previous expressions we find the elegant formula

All the isosymmetric vacuum polarization diagrams cancel
by taking the difference of!M!þ and!M!0 together with
the disconnected sea quark loop contributions explicitly
shown in Eqs. (64) and (65). Note, in particular, the can-
cellation of the corrections/counterterms corresponding to
the variation of the symmetric up-down quark mass m ud %
m 0

ud and to the variation of the strong coupling constant
g2s % ðg0sÞ2. This is a general feature: at first order of the
perturbative expansion in "̂em and m̂ d % m̂ u, the isosym-
metric corrections coming from the variation of the stong
gauge coupling (the lattice spacing), of m ud and of the
heavier quark masses do not contribute to observables that

vanish in the isosymmetric theory, like the mass splitting
M!þ %M!0 . Furthermore, as already stressed, the electric
charge does not need to be renormalized at this order and,
for all these reasons, the expression for the pion mass
splitting can be considered a ‘‘clean’’ theoretical prediction.
On the other hand, the lattice calculation of the discon-

nected diagram present in Eq. (66) is a highly nontrivial
numerical problem and we shall neglect this contribution
in this paper. Relying on the same arguments that lead to
the derivation of the flavor SUð3Þversion of Dashen’s
theorem [see Eq. (39)], it can be shown that the neutral
pion mass has to vanish in the limit m̂ u ¼ m̂ d ¼ 0 for

G.M. DE DIVITIIS et al. PHYSICAL REVIEW D 87, 114505 (2013)
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FIG. 1: Fermionic connected diagrams contributing at O(e2) and O(md�mu) to the IB corrections to meson

masses: exchange (a), self energy (b), tadpole (c), pseudoscalar insertion (d) and scalar insertion (e).

In order to evaluate the diagrams (1a)-(1e) the following correlators are considered:
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where f = {u, d, s, c},
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is the (lattice) conserved e.m. current, and
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is the tadpole operator with �PS(x) = i f1(x)�5 f2(x) being the interpolating field for a PS meson

composed by two valence quarks f1 and f2 with charges q1e and q2e. In our twisted-mass setup

the Wilson parameters of the two valence quarks are chosen to be opposite (r1 = �r2) in order to

guarantee that discretization e↵ects on MPS are of order O(a2m⇤QCD).

Within the quenched QED approximation the correlator �CJ(t) corresponds to the sum of the

diagrams (1a)-(1b), while the correlators �CT (t), �CPf (t) and �CS(t) represent the contributions

of the diagrams (1c), (1d) and (1e), respectively. The removal of the photon zero-mode is done

		

1
Z

f

em
	is	LO	in	QED	and	O αs

0( ) 	in	QCD:	 1Z
f

em
MS ,µ *( ) =αemqf

2

4π
6log aµ *( )−22.596⎡
⎣

⎤
⎦ [Martinelli&Zhang ’82,  Aoki et al. ’98]

		

1
Z f

=
1

Z f
emZm

fact
=1+O αem ,αemαs( )

Zm = mass RC in QCD

		

µ̂ f −µ f( )× insertion	of	scalar	density( ) µ=µ*
f =s ,c

⎯ →⎯
mf

ZmZ f

emZm
fact

		
Zm
fact 		is		1+O αemαs( ) “factorization approximation” between QED and QCD vertex corrections

		Zm
fact =1
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ZA = ZA

0( )
+αemZA

1( ) +O αem
2( ) = ZA

0( )
1−2.51406αemqf

2ZA
fact( )+O αem

2( )

* e.m. corrections to the renormalization of the (local) e.m. current:

perturbative estimate at LO in αem 

correction to the “factorization approximation” between QED and QCD 
vertex corrections based on WI

* addition of a further contribution:
	
δV t( ) =δV self t( )+δV exch t( )+δV tad t( )+δV PS t( )+δV S t( )+δV ZA t( )

we have adopted a maximally twisted-mass setup with quarks and anti-quarks regularized with opposite 
values of the Wilson r-parameter: the vector current renormalizes multiplicatively with ZA 

		
δV ZA t( ) =−2.51406αemqf

2 ZA
fact V(t)

[Martinelli&Zhang ’82]

		ZA
fact =0.9±0.1

		
doublet	of	mass-	and	charge-degenerate	TM	quarks	⇒ 	∂

µ
A
µ
1p−split x( ) =2mP5 x( )

		

ZV ∂µ Aµ
TM ,local x( ) =2mP5TM x( )+O a2( )

ZV 0 A0
TM ,local PS = ZA 0 A0

OS ,local PS +O a2( )

⎧

⎨
⎪⎪

⎩
⎪
⎪
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of the ETMC ensembles. As in Section V, we introduce the correction factors Z(fact)
V

and Z
(fact)
A

to the “naive factorization” approximation by defining

�ZV = Z
(0)
V

· Z
(em)
V

· Z
(fact)
V

, �ZA = Z
(0)
A

· Z
(em)
A

· Z
(fact)
A

, (A28)

where Z
(em)
V (A) is the one-loop perturbative estimate of the QED e↵ect at order O(↵0

s) in the strong

coupling. Using for the latter ones the perturbative findings Z
(em)
V

= �20.6178 ↵emq
2
/(4⇡) and

Z
(em)
A

= �15.7963 ↵emq
2
/(4⇡) from Refs. [36, 37], our results for Z(fact)

V
and Z

(fact)
A

are collected

in Table V. It can be seen that the dependence on the lattice spacing is quite mild within the

� Z
(fact)
V Z

(fact)
A

1.90 1.027 (5) 0.85 (5)

1.95 1.033 (4) 0.93 (5)

2.10 1.034 (3) 0.87 (6)

TABLE V: Results for Z
(fact)
V and Z

(fact)
A (see Eq. (A28)) obtained at the three values of the inverse bare

lattice coupling � corresponding to the gauge ensembles of Table I.

uncertainties and therefore we average the results of Table V (using Eq. (28) of Ref. [29]) obtaining

Z
(fact)
V

= 1.031± 0.005 and Z
(fact)
A

= 0.88± 0.06. Doubling the errors to try to take into account

systematic uncertainties, our final estimates for Z(fact)
V

and Z
(fact)
A

are

Z
(fact)
V

= 1.03± 0.01 , Z
(fact)
A

= 0.9± 0.1 . (A29)
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