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@ Dispersive approach to HLbL

Reminder: BTT Lorentz decomposition

Lorentz decomposition of the HLbL tensor:

— Bardeen, Tung (1968) and Tarrach (1975)

127 (g1, g2, q3) ZT“MU st u;q))

e Lorentz structures manifestly gauge invariant

e scalar functions II; free of kinematic singularities
= dispersion relation in the Mandelstam variables



@ Dispersive approach to HLbL
Dispersive representation

e write down a double-spectral (Mandelstam)
representation for the HLbL tensor

e split the HLbL tensor according to the sum over
intermediate (on-shell) states in unitarity relations

_ 1ym-pole box Lo
H,uzz/\a - H,w/)\a + H,ul/)\a + Hw/)\a
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@ Helicity-partial-wave formalism
Resonance contributions to HLbL?

e unitarity: resonances unstable, not asymptotic states
=- do not show up in unitarity relation

e analyticity: resonances are poles on unphysical
Riemann sheets of partial-wave amplitudes
= describe in terms of multi-particle intermediate
states that generate the branch cut

e here: resonant wr contributions in S-wave (f,) and
D-wave (f5)

e resonance model-independently encoded in
wr-scattering phase shifts



@ Helicity-partial-wave formalism

Rescattering contribution

i

e neglect left-hand cut due to multi-particle
intermediate states in crossed channel

e two-pion cut in only one channel:

1/1 [ ImIIT™ (s, ¢/, u’ 1 [o° ImII7™ (s, t', u’
fpr = L(L [ a0 1 I )
2\ 7 Jamz2 t—t 7 Janm2 u —u

+ fixed-t

+ fixed-u)



@ Helicity-partial-wave formalism

Helicity formalism and sum rules

Several challenges:

e ambiguities in the tensor decomposition: make sure
that only physical helicity amplitudes contribute to the
result (i.e. only +1 helicities of external photon)

e helicity amplitudes have kinematic singularities and a
worse asymptotic behaviour than scalar functions II;
¢ find a good basis for the singly-on-shell case:
e no subtractions necessary
¢ no ambiguities due to tensor decomposition
e longitudinal polarisations for external photon
manifestly absent



@ Helicity-partial-wave formalism

Helicity formalism and sum rules

Crucial observation to solve these problems:

¢ uniform asymptotic behaviour of the full tensor
together with BTT tensor decomposition leads to
9 HLbL sum rules

e sum rules derived for general (g — 2),, kinematics

e can be expressed in terms of helicity amplitudes



@ Helicity-partial-wave formalism

Helicity formalism and sum rules

Singly-on-shell basis {I1,} for fixed-s/t/u constructed:
e 27 elements — one-to-one correspondence to 27
physical helicity amplitudes
I, = ¢, H;
basis change (27 x27 matrix ¢;;) explicitly calculated
e unsubtracted dispersion relations for IT;

 sum rules simple in terms of IT;:

(for certain )

0= /ds/Imf[Z-(s’)

t=q3,43=0



@ Helicity-partial-wave formalism

Rescattering contribution

expansion into partial waves

unitarity gives imaginary parts in terms of helicity
amplitudes for y*y*) — 7

Imﬂ'ﬂ'hil)\Q,)\g)q (S) 08 0-71' (S)hJ)\l/\2 (S>hj;,)\3/\4 (S>

framework valid for arbitrary partial waves

resummation of PW expansion reproduces full result:
checked for pion box



@ Helicity-partial-wave formalism

Convergence of partial-wave expansion

m-box, PW

Relative deviation from full result: 1 — “2Zzac
m

Jmax | fixed-s | fixed-t | fixed-u | average

0 100.0% | —6.2% | —6.2% 29.2%
2 26.1% | —2.3% 7.3% 10.4%
4 10.8% | —1.5% 3.6% 4.3%
6
8

5.7% | —0.7% 2.1% 2.4%
3.5% | —0.4% 1.3% 1.5%
10 2.3% | —0.2% 0.9% 1.0%
12 1.7% | —0.1% 0.7% 0.7%
14 1.3% | —0.1% 0.5% 0.6%
16 1.0% | —0.0% 0.4% 0.4%
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@ nr-rescattering: S-waves

Topologies in the rescattering contribution

Our S-wave solution for v*v* — n:

X XX

recursive PWE, no LHC

Two-pion contributions to HLbL:

pion box rescattering contribution



@ nr-rescattering: S-waves

The subprocess

Omnes solution of unitarity relation for v*v* — o
helicity partial waves:

hl(s) — AZ(S) + QO(S> Aoo dS/Kij(S,S,) Sin(S()(S,)Aj(s/)

™ M2 1Q0(s")]

A;(s): inhomogeneity due to left-hand cut

(
e (Qy(s): Omnés function with 77 S-wave phase shifts
do(s) as input

K;;(s, s"): integration kernels

S-waves: kernels emerge from a 2x2 system for
ho ++ and hg oo and two scalar functions A, ,



@ nr-rescattering: S-waves

S-wave rescattering contribution

e pion-pole approximation to left-hand cut
= ¢*-dependence given by £V

e phase shifts based on modified inverse-amplitude
method (fo(500) parameters accurately reproduced)

o result for S-waves: 7P = —g(1) x 10711



@ nr-rescattering: S-waves

Pion polarisabilities

e definition of polarisabilities:

20+
h
M;,s 0

(s) = (o — B1) + E(OQ — f2) + O(s°)

. ﬁ0,++: Born-term subtracted helicity partial wave

e from the Omneés solution: sum rule for polarisabilities,
e.g. for pion-pole LHC

_B) =~ ds'
5oy (a1 = fr) ™ Sz § 1Q0(s")] 52

% 1 /OO sin (50(8/)A07++(S,)



@ nr-rescattering: S-waves

Pion polarisabilities

sum rule ChPT

— Gasser et al. (2005, 2006)
(v — B1)™ [1074fm®]  54...5.8 5.7(1.0)
(a1 — )™ [1074fm®] 11.2...8.9 ~1.9(2)

o 7* polarisabilities accurately reproduced (also in
agreement with COMPASS measurement)

o 7 polarisabilities require inclusion of higher
intermediate states in the LHC, especially w

e relation to (¢ — 2), only indirect (different kinematic
region)



Overview

@ rr-rescattering: D-waves and higher left-hand cuts

20



@ wm-rescattering: D-waves and higher left-hand cuts

21

Extension to D-waves

D-waves describe f>(1270) resonance in terms of 77
rescattering

inclusion of higher left-hand cuts (p, w resonances)
necessary to reproduce observed f,(1270) resonance
peak in on-shell vy — 7x

NWA for vector resonance LHC with Vz~ interaction
L = eCye M F,,0\V,

coupling Cy related to decay width T'(V' — 7)

off-shell behaviour described by resonance transition
form factors Fy . (¢?)



@ wm-rescattering: D-waves and higher left-hand cuts

22

Topologies in the Omnes solution

Omneés solution for v*~v* — 7w with higher left-hand
cuts provides the following:

XX

recursive PWE, no LHC



@ wm-rescattering: D-waves and higher left-hand cuts
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Modified Omnes representation

— Garcia-Martin, Moussallam 2010

hl(s) = Nl(s) -+ Szfr){ / dS/K’L]( 79()51/) hj( )

— 00

o0 K;i(s,s")sind(s")N;(s)
+ ds' = J
/41VI}: |€2(s")]

N;(s): only Born term as inhomogeneity

higher left-hand cuts in first dispersion integral: fix
polynomial ambiguities of Lagrangian formulation

2(s): Omnés function with = phase 4¢(s) as input

K;j(s,s'): integration kernels from the full 5 x 5
D-wave Roy—Steiner system



@ wm-rescattering: D-waves and higher left-hand cuts

“Anomalous thresholds” for large space-like ¢?

Left-hand cut structure of resonance partial waves:
LS

e two logarithmic branch cuts (—oo, s_.,.], [sdu, 0]

) “cut
e square-root branch cut on second sheet, but extends
into the physical sheet for ¢?¢3 > (M3 — M?)?

24



@ wm-rescattering: D-waves and higher left-hand cuts

“Anomalous thresholds” for large space-like ¢?

o deformation of integration contour for
qigs > (Mg — M7)?

e anomalous singularity s, behaves for some D-wave
contributions like (s, — s)~7/?

e contour integral around s, does not vanish and
makes result finite

e cancellations require careful numerical
implementation

25



@ wm-rescattering: D-waves and higher left-hand cuts
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Higher left-hand cuts and pion polarisabilities

consider quadrupole polarisabilities:

sum rule ChPT
— Gasser et al. (2005, 2006)
(a2 — B2)™ [107*fm®] 19.9...20.1 16.2 [21.6]
(ap — B2)™ [107*fm°] 26.3...27.1 37.6(3.3)

o 7 polarisabilities again in bad agreement
e add p, w left-hand cut contribution:
(a2 — Bo) = 0.9 x 107 fm®,
(a2 — B2)F = 10.3 x 10~ * fm®

¥ polarisabilities restored, =* barely affected



@ wm-rescattering: D-waves and higher left-hand cuts
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Higher intermediate states

e in the limit of narrow widths, resonance contributions
reduce to pole contributions with resonance transition
form factors as input
— Pauk, Vanderhaeghen (2014); Danilkin, Vanderhaeghen (2017)

e compare to dispersive treatment and use f»(1270) as
a test case

e BTT Lorentz decomposition for scalar, axial, and
tensor resonances =- avoid kinematic singularities

e dispersive treatment requires residue in HLbL basis
(differences to Lagrangian model formulation)



@ wm-rescattering: D-waves and higher left-hand cuts
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Higher intermediate states

e our 9 HLbL sum rules for (g — 2),, kinematics allow
different dispersive representations — JHEP 04 (2017) 161

¢ single resonance states not uniquely defined unless
sum rules are fulfilled

e for forward scattering, one sum rule reduces to known
forward sum rule — Pascalutsa, Pauk, Vanderhaeghen (2012)
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@ Outlook

Conclusion and outlook

e precise prediction for S-wave nr-rescattering
contribution with pion-pole left-hand cut:
ap TR = —8(1) x 1071
e D-wave contribution work in progress: requires
inclusion of higher left-hand cuts

e compare to narrow-width approximation of f»(1270)

30
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