Dispersive approach to hadronic light-by-light: partial-wave contributions

#### Peter Stoffer

Physics Department, UC San Diego

in collaboration with G. Colangelo, M. Hoferichter, and M. Procura

JHEP 04 (2017) 161, [arXiv:1702.07347 [hep-ph]] Phys. Rev. Lett. 118 (2017) 232001, [arXiv:1701.06554 [hep-ph]] and work in progress

#### 19th June 2018

Second Plenary Workshop of the Muon g - 2 Theory Initiative, Helmholtz-Institut Mainz

## 1 Dispersive approach to HLbL

- 2 Helicity-partial-wave formalism
- **3**  $\pi\pi$ -rescattering: *S*-waves
- 4  $\pi\pi$ -rescattering: *D*-waves and higher left-hand cuts



## 1 Dispersive approach to HLbL

- 2 Helicity-partial-wave formalism
- **3**  $\pi\pi$ -rescattering: *S*-waves
- 4  $\pi\pi$ -rescattering: *D*-waves and higher left-hand cuts

### **5** Outlook

# Reminder: BTT Lorentz decomposition

#### Lorentz decomposition of the HLbL tensor:

 $\rightarrow$  Bardeen, Tung (1968) and Tarrach (1975)

$$\Pi^{\mu\nu\lambda\sigma}(q_1, q_2, q_3) = \sum_i T_i^{\mu\nu\lambda\sigma} \Pi_i(s, t, u; q_j^2)$$

- · Lorentz structures manifestly gauge invariant
- scalar functions  $\Pi_i$  free of kinematic singularities  $\Rightarrow$  dispersion relation in the Mandelstam variables



- write down a double-spectral (Mandelstam) representation for the HLbL tensor
- split the HLbL tensor according to the sum over intermediate (on-shell) states in unitarity relations

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^{0}\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\text{box}}_{\mu\nu\lambda\sigma} + \Pi^{\pi\pi}_{\mu\nu\lambda\sigma} + \dots$$



- write down a double-spectral (Mandelstam) representation for the HLbL tensor
- split the HLbL tensor according to the sum over intermediate (on-shell) states in unitarity relations

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^{0}\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\text{box}}_{\mu\nu\lambda\sigma} + \Pi^{\pi\pi}_{\mu\nu\lambda\sigma} + \dots$$





- write down a double-spectral (Mandelstam) representation for the HLbL tensor
- split the HLbL tensor according to the sum over intermediate (on-shell) states in unitarity relations

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^{0}\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\text{box}}_{\mu\nu\lambda\sigma} + \Pi^{\pi\pi}_{\mu\nu\lambda\sigma} + \dots$$

two-pion intermediate state in both channels

 $\rightarrow$  talk by G. Colangelo



- write down a double-spectral (Mandelstam) representation for the HLbL tensor
- split the HLbL tensor according to the sum over intermediate (on-shell) states in unitarity relations

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^{0}\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\mu\nu\lambda\sigma}_{\mu\nu\lambda\sigma} + \Pi^{\pi\pi}_{\mu\nu\lambda\sigma} + \dots$$

two-pion intermediate state in first channel

 $\rightarrow$  this talk



- write down a double-spectral (Mandelstam) representation for the HLbL tensor
- split the HLbL tensor according to the sum over intermediate (on-shell) states in unitarity relations

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^{0}\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\text{box}}_{\mu\nu\lambda\sigma} + \Pi^{\pi\pi}_{\mu\nu\lambda\sigma} + \dots$$

higher intermediate states

### Dispersive approach to HLbL

## 2 Helicity-partial-wave formalism

#### **3** $\pi\pi$ -rescattering: *S*-waves

4  $\pi\pi$ -rescattering: *D*-waves and higher left-hand cuts

### **5** Outlook



#### Resonance contributions to HLbL?

- unitarity: resonances unstable, not asymptotic states
  ⇒ do not show up in unitarity relation
- analyticity: resonances are poles on unphysical Riemann sheets of partial-wave amplitudes
   ⇒ describe in terms of multi-particle intermediate states that generate the branch cut
- here: resonant ππ contributions in S-wave (f<sub>0</sub>) and D-wave (f<sub>2</sub>)
- resonance model-independently encoded in  $\pi\pi$ -scattering phase shifts



### **Rescattering contribution**



- neglect left-hand cut due to multi-particle intermediate states in crossed channel
- two-pion cut in only one channel:

$$\begin{split} \Pi_{i}^{\pi\pi} &= \frac{1}{2} \bigg( \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} dt' \frac{\mathrm{Im} \Pi_{i}^{\pi\pi}(s,t',u')}{t'-t} + \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} du' \frac{\mathrm{Im} \Pi_{i}^{\pi\pi}(s,t',u')}{u'-u} \\ &+ \mathrm{fixed-}t \\ &+ \mathrm{fixed-}u \bigg) \end{split}$$

# Helicity formalism and sum rules

#### Several challenges:

- ambiguities in the tensor decomposition: make sure that only physical helicity amplitudes contribute to the result (i.e. only  $\pm 1$  helicities of external photon)
- helicity amplitudes have kinematic singularities and a worse asymptotic behaviour than scalar functions  $\Pi_i$
- find a good basis for the singly-on-shell case:
  - no subtractions necessary
  - no ambiguities due to tensor decomposition
  - longitudinal polarisations for external photon manifestly absent



# Helicity formalism and sum rules

Crucial observation to solve these problems:

- uniform asymptotic behaviour of the full tensor together with BTT tensor decomposition leads to 9 HLbL sum rules
- sum rules derived for general  $(g-2)_{\mu}$  kinematics
- can be expressed in terms of helicity amplitudes

# Helicity formalism and sum rules

Singly-on-shell basis  $\{\check{\Pi}_i\}$  for fixed-s/t/u constructed:

 27 elements – one-to-one correspondence to 27 physical helicity amplitudes

$$\check{\Pi}_i = \check{c}_{ij} H_j$$

basis change (27×27 matrix  $\check{c}_{ij}$ ) explicitly calculated

- unsubtracted dispersion relations for  $\check{\Pi}_i$
- sum rules simple in terms of  $\check{\Pi}_i$ :

$$0 = \int ds' \mathrm{Im} \check{\Pi}_i(s') \Big|_{t=q_2^2, q_4^2=0}$$
 (for certain *i*)



## Rescattering contribution



- expansion into partial waves
- unitarity gives imaginary parts in terms of helicity amplitudes for  $\gamma^*\gamma^{(*)} \rightarrow \pi\pi$ :

$$\mathrm{Im}_{\pi\pi}h^{J}_{\lambda_{1}\lambda_{2},\lambda_{3}\lambda_{4}}(s) \propto \sigma_{\pi}(s)h_{J,\lambda_{1}\lambda_{2}}(s)h^{*}_{J,\lambda_{3}\lambda_{4}}(s)$$

- framework valid for arbitrary partial waves
- resummation of PW expansion reproduces full result: checked for pion box

# Convergence of partial-wave expansion

Relative deviation from full result:  $1 - \frac{a_{\mu,\nu}^{*}}{a_{\mu}^{*}}$ 

$$- \frac{a_{\mu,J_{\max}}^{\pi\text{-box, PW}}}{a_{\mu}^{\pi\text{-box}}}$$

| $J_{\max}$ | fixed-s | fixed-t | fixed-u | average |
|------------|---------|---------|---------|---------|
| 0          | 100.0%  | -6.2%   | -6.2%   | 29.2%   |
| 2          | 26.1%   | -2.3%   | 7.3%    | 10.4%   |
| 4          | 10.8%   | -1.5%   | 3.6%    | 4.3%    |
| 6          | 5.7%    | -0.7%   | 2.1%    | 2.4%    |
| 8          | 3.5%    | -0.4%   | 1.3%    | 1.5%    |
| 10         | 2.3%    | -0.2%   | 0.9%    | 1.0%    |
| 12         | 1.7%    | -0.1%   | 0.7%    | 0.7%    |
| 14         | 1.3%    | -0.1%   | 0.5%    | 0.6%    |
| 16         | 1.0%    | -0.0%   | 0.4%    | 0.4%    |

### Dispersive approach to HLbL

- 2 Helicity-partial-wave formalism
- **3**  $\pi\pi$ -rescattering: *S*-waves
- 4  $\pi\pi$ -rescattering: *D*-waves and higher left-hand cuts

## **5** Outlook

# Topologies in the rescattering contribution

Our *S*-wave solution for  $\gamma^* \gamma^* \to \pi \pi$ :



Two-pion contributions to HLbL:



3

# The subprocess

Omnès solution of unitarity relation for  $\gamma^* \gamma^* \rightarrow \pi \pi$ helicity partial waves:

$$h_i(s) = \Delta_i(s) + \frac{\Omega_0(s)}{\pi} \int_{4M_{\pi}^2}^{\infty} ds' \frac{K_{ij}(s,s') \sin \delta_0(s') \Delta_j(s')}{|\Omega_0(s')|}$$

- $\Delta_i(s)$ : inhomogeneity due to left-hand cut
- $\Omega_0(s)$ : Omnès function with  $\pi\pi$  *S*-wave phase shifts  $\delta_0(s)$  as input
- $K_{ij}(s, s')$ : integration kernels
- *S*-waves: kernels emerge from a 2×2 system for  $h_{0,++}$  and  $h_{0,00}$  and two scalar functions  $A_{1,2}$

3



## S-wave rescattering contribution

- pion-pole approximation to left-hand cut  $\Rightarrow q^2$ -dependence given by  $F_{\pi}^V$
- phase shifts based on modified inverse-amplitude method (f<sub>0</sub>(500) parameters accurately reproduced)
- result for S-waves:  $a_{\mu,J=0}^{\pi\pi,\pi\text{-pole LHC}}=-8(1)\times10^{-11}$

# Pion polarisabilities

• definition of polarisabilities:

$$\frac{2\alpha}{M_{\pi s}}\hat{h}_{0,++}(s) = (\alpha_1 - \beta_1) + \frac{s}{12}(\alpha_2 - \beta_2) + \mathcal{O}(s^2)$$

- $\hat{h}_{0,++}$ : Born-term subtracted helicity partial wave
- from the Omnès solution: sum rule for polarisabilities, e.g. for pion-pole LHC

$$\frac{M_{\pi}}{2\alpha}(\alpha_1 - \beta_1) = \frac{1}{\pi} \int_{4M_{\pi}^2}^{\infty} ds' \frac{\sin \delta_0(s') \Delta_{0, ++}(s')}{|\Omega_0(s')| s'^2}$$

# Pion polarisabilities

|                                                                                                                                                                               | sum rule          | $\begin{array}{c} \text{ChPT} \\ \rightarrow \text{Gasser et al. (2005, 2006)} \end{array}$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------|
| $ \begin{array}{l} (\alpha_1 - \beta_1)^{\pi^{\pm}} \left[ 10^{-4}  \mathrm{fm}^3 \right] \\ (\alpha_1 - \beta_1)^{\pi^0} \left[ 10^{-4}  \mathrm{fm}^3 \right] \end{array} $ | 5.45.8<br>11.28.9 | 5.7(1.0)<br>-1.9(2)                                                                         |

- π<sup>±</sup> polarisabilities accurately reproduced (also in agreement with COMPASS measurement)
- $\pi^0$  polarisabilities require inclusion of higher intermediate states in the LHC, especially  $\omega$
- relation to  $(g-2)_{\mu}$  only indirect (different kinematic region)

3

#### Dispersive approach to HLbL

- 2 Helicity-partial-wave formalism
- **3**  $\pi\pi$ -rescattering: *S*-waves

4  $\pi\pi$ -rescattering: *D*-waves and higher left-hand cuts

### **5** Outlook

## Extension to *D*-waves

- *D*-waves describe  $f_2(1270)$  resonance in terms of  $\pi\pi$  rescattering
- inclusion of higher left-hand cuts ( $\rho$ ,  $\omega$  resonances) necessary to reproduce observed  $f_2(1270)$  resonance peak in on-shell  $\gamma\gamma \rightarrow \pi\pi$
- NWA for vector resonance LHC with  $V\pi\gamma$  interaction

$$\mathcal{L} = e C_V \epsilon^{\mu\nu\lambda\sigma} F_{\mu\nu} \partial_\lambda \pi V_\sigma$$

- coupling  $C_V$  related to decay width  $\Gamma(V \to \pi \gamma)$
- off-shell behaviour described by resonance transition form factors  $F_{V\pi}(q^2)$

# Topologies in the Omnès solution

Omnès solution for  $\gamma^* \gamma^* \rightarrow \pi \pi$  with higher left-hand cuts provides the following:



# Modified Omnès representation

 $\rightarrow$  García-Martín, Moussallam 2010

$$\begin{aligned} h_i(s) &= N_i(s) + \frac{\Omega(s)}{\pi} \Biggl\{ \int_{-\infty}^0 ds' \frac{K_{ij}(s,s') \operatorname{Im} h_j(s')}{\Omega(s')} \\ &+ \int_{4M_{\pi}^2}^\infty ds' \frac{K_{ij}(s,s') \sin \delta(s') N_j(s')}{|\Omega(s')|} \Biggr\} \end{aligned}$$

- N<sub>i</sub>(s): only Born term as inhomogeneity
- higher left-hand cuts in first dispersion integral: fix polynomial ambiguities of Lagrangian formulation
- $\Omega(s)$ : Omnès function with  $\pi\pi$  phase  $\delta(s)$  as input
- $K_{ij}(s, s')$ : integration kernels from the full  $5 \times 5$ *D*-wave Roy–Steiner system

# "Anomalous thresholds" for large space-like $q_i^2$

Left-hand cut structure of resonance partial waves:



- two logarithmic branch cuts  $(-\infty, s_{\text{cut}}^-]$ ,  $[s_{\text{cut}}^+, 0]$
- square-root branch cut on second sheet, but extends into the physical sheet for  $q_1^2 q_2^2 > (M_R^2 M_\pi^2)^2$

#### ) $\pi\pi$ -rescattering: *D*-waves and higher left-hand cuts

# "Anomalous thresholds" for large space-like $q_i^2$

- deformation of integration contour for  $q_1^2 q_2^2 > (M_R^2 M_\pi^2)^2$
- anomalous singularity  $s_a$  behaves for some D-wave contributions like  $(s_a s)^{-7/2}$
- contour integral around s<sub>a</sub> does not vanish and makes result finite
- cancellations require careful numerical implementation

# Higher left-hand cuts and pion polarisabilities

consider quadrupole polarisabilities:

|                                                                                                                                                                                    | sum rule             | $\begin{array}{c} \text{ChPT} \\ \rightarrow \text{Gasser et al. (2005, 2006)} \end{array}$ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------|
| $ \begin{aligned} & (\alpha_2 - \beta_2)^{\pi^{\pm}} \left[ 10^{-4}  \mathrm{fm}^5 \right] \\ & (\alpha_2 - \beta_2)^{\pi^0} \left[ 10^{-4}  \mathrm{fm}^5 \right] \end{aligned} $ | 19.920.1<br>26.327.1 | $16.2 [21.6] \\ 37.6(3.3)$                                                                  |

- $\pi^0$  polarisabilities again in bad agreement
- add  $\rho, \omega$  left-hand cut contribution:

$$(\alpha_2 - \beta_2)_V^{\pi^{\pm}} = 0.9 \times 10^{-4} \,\mathrm{fm}^5 \,,$$
$$(\alpha_2 - \beta_2)_V^{\pi^0} = 10.3 \times 10^{-4} \,\mathrm{fm}^5$$

•  $\pi^0$  polarisabilities restored,  $\pi^{\pm}$  barely affected

# Higher intermediate states

 in the limit of narrow widths, resonance contributions reduce to pole contributions with resonance transition form factors as input

→ Pauk, Vanderhaeghen (2014); Danilkin, Vanderhaeghen (2017)

- compare to dispersive treatment and use  $f_2(1270)$  as a test case
- BTT Lorentz decomposition for scalar, axial, and tensor resonances ⇒ avoid kinematic singularities
- dispersive treatment requires residue in HLbL basis (differences to Lagrangian model formulation)

# Higher intermediate states

- our 9 HLbL sum rules for  $(g 2)_{\mu}$  kinematics allow different dispersive representations  $\rightarrow$  JHEP 04 (2017) 161
- single resonance states not uniquely defined unless sum rules are fulfilled
- for forward scattering, one sum rule reduces to known forward sum rule → Pascalutsa, Pauk, Vanderhaeghen (2012)

### Dispersive approach to HLbL

- 2 Helicity-partial-wave formalism
- **3**  $\pi\pi$ -rescattering: *S*-waves
- 4  $\pi\pi$ -rescattering: *D*-waves and higher left-hand cuts





# Conclusion and outlook

 precise prediction for S-wave ππ-rescattering contribution with pion-pole left-hand cut:

$$a_{\mu,J=0}^{\pi\pi,\pi\text{-pole LHC}} = -8(1)\times 10^{-11}$$

- *D*-wave contribution work in progress: requires inclusion of higher left-hand cuts
- compare to narrow-width approximation of  $f_2(1270)$