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1 Dispersive approach to HLbL

Reminder: BTT Lorentz decomposition

Lorentz decomposition of the HLbL tensor:
→ Bardeen, Tung (1968) and Tarrach (1975)

Πµνλσ(q1, q2, q3) =
∑
i

T µνλσi Πi(s, t, u; q2
j )

• Lorentz structures manifestly gauge invariant

• scalar functions Πi free of kinematic singularities
⇒ dispersion relation in the Mandelstam variables
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1 Dispersive approach to HLbL

Dispersive representation

• write down a double-spectral (Mandelstam)
representation for the HLbL tensor

• split the HLbL tensor according to the sum over
intermediate (on-shell) states in unitarity relations

Πµνλσ = Ππ0-pole
µνλσ + Πbox

µνλσ + Πππ
µνλσ + . . .
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1 Dispersive approach to HLbL

Dispersive representation

• write down a double-spectral (Mandelstam)
representation for the HLbL tensor

• split the HLbL tensor according to the sum over
intermediate (on-shell) states in unitarity relations

Πµνλσ = Ππ0-pole
µνλσ + Πbox

µνλσ + Πππ
µνλσ + . . .

higher intermediate states
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2 Helicity-partial-wave formalism

Resonance contributions to HLbL?

• unitarity: resonances unstable, not asymptotic states
⇒ do not show up in unitarity relation

• analyticity: resonances are poles on unphysical
Riemann sheets of partial-wave amplitudes
⇒ describe in terms of multi-particle intermediate
states that generate the branch cut

• here: resonant ππ contributions in S-wave (f0) and
D-wave (f2)

• resonance model-independently encoded in
ππ-scattering phase shifts
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2 Helicity-partial-wave formalism

Rescattering contribution

• neglect left-hand cut due to multi-particle
intermediate states in crossed channel

• two-pion cut in only one channel:

Πππi =
1

2

(
1

π

∫ ∞
4M2

π

dt′
ImΠππi (s, t′, u′)

t′ − t
+

1

π

∫ ∞
4M2

π

du′
ImΠππi (s, t′, u′)

u′ − u

+ fixed-t

+ fixed-u
)
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2 Helicity-partial-wave formalism

Helicity formalism and sum rules

Several challenges:

• ambiguities in the tensor decomposition: make sure
that only physical helicity amplitudes contribute to the
result (i.e. only ±1 helicities of external photon)

• helicity amplitudes have kinematic singularities and a
worse asymptotic behaviour than scalar functions Πi

• find a good basis for the singly-on-shell case:
• no subtractions necessary
• no ambiguities due to tensor decomposition
• longitudinal polarisations for external photon

manifestly absent
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2 Helicity-partial-wave formalism

Helicity formalism and sum rules

Crucial observation to solve these problems:

• uniform asymptotic behaviour of the full tensor
together with BTT tensor decomposition leads to
9 HLbL sum rules

• sum rules derived for general (g − 2)µ kinematics

• can be expressed in terms of helicity amplitudes
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2 Helicity-partial-wave formalism

Helicity formalism and sum rules

Singly-on-shell basis {Π̌i} for fixed-s/t/u constructed:

• 27 elements – one-to-one correspondence to 27
physical helicity amplitudes

Π̌i = čijHj

basis change (27×27 matrix čij) explicitly calculated

• unsubtracted dispersion relations for Π̌i

• sum rules simple in terms of Π̌i:

0 =

∫
ds′ImΠ̌i(s

′)
∣∣∣
t=q22 ,q

2
4=0

(for certain i)
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2 Helicity-partial-wave formalism

Rescattering contribution

• expansion into partial waves

• unitarity gives imaginary parts in terms of helicity
amplitudes for γ∗γ(∗) → ππ:

Imππh
J
λ1λ2,λ3λ4

(s) ∝ σπ(s)hJ,λ1λ2(s)h
∗
J,λ3λ4

(s)

• framework valid for arbitrary partial waves

• resummation of PW expansion reproduces full result:
checked for pion box
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2 Helicity-partial-wave formalism

Convergence of partial-wave expansion

Relative deviation from full result: 1− aπ-box, PW
µ,Jmax
aπ-box
µ

Jmax fixed-s fixed-t fixed-u average

0 100.0% −6.2% −6.2% 29.2%

2 26.1% −2.3% 7.3% 10.4%

4 10.8% −1.5% 3.6% 4.3%

6 5.7% −0.7% 2.1% 2.4%

8 3.5% −0.4% 1.3% 1.5%

10 2.3% −0.2% 0.9% 1.0%

12 1.7% −0.1% 0.7% 0.7%

14 1.3% −0.1% 0.5% 0.6%

16 1.0% −0.0% 0.4% 0.4%
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3 ππ-rescattering: S-waves

Topologies in the rescattering contribution

Our S-wave solution for γ∗γ∗ → ππ:

= + =: +

︸︷︷︸ ︸︷︷︸
recursive PWE, no LHC

Two-pion contributions to HLbL:

= + + +

︸ ︷︷ ︸ ︸ ︷︷ ︸
pion box rescattering contribution
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3 ππ-rescattering: S-waves

The subprocess

Omnès solution of unitarity relation for γ∗γ∗ → ππ

helicity partial waves:

hi(s) = ∆i(s) +
Ω0(s)

π

∫ ∞
4M2

π

ds′
Kij(s, s

′) sin δ0(s′)∆j(s
′)

|Ω0(s′)|

• ∆i(s): inhomogeneity due to left-hand cut

• Ω0(s): Omnès function with ππ S-wave phase shifts
δ0(s) as input

• Kij(s, s
′): integration kernels

• S-waves: kernels emerge from a 2×2 system for
h0,++ and h0,00 and two scalar functions A1,2
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3 ππ-rescattering: S-waves

S-wave rescattering contribution

• pion-pole approximation to left-hand cut
⇒ q2-dependence given by F V

π

• phase shifts based on modified inverse-amplitude
method (f0(500) parameters accurately reproduced)

• result for S-waves: aππ,π-pole LHC
µ,J=0 = −8(1)× 10−11
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3 ππ-rescattering: S-waves

Pion polarisabilities

• definition of polarisabilities:

2α

Mπs
ĥ0,++(s) = (α1 − β1) +

s

12
(α2 − β2) +O(s2)

• ĥ0,++: Born-term subtracted helicity partial wave

• from the Omnès solution: sum rule for polarisabilities,
e.g. for pion-pole LHC

Mπ

2α
(α1 − β1) =

1

π

∫ ∞
4M2

π

ds′
sin δ0(s′)∆0,++(s′)

|Ω0(s′)|s′2
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3 ππ-rescattering: S-waves

Pion polarisabilities

sum rule ChPT
→ Gasser et al. (2005, 2006)

(α1 − β1)π
± [

10−4 fm3
]

5.4 . . . 5.8 5.7(1.0)

(α1 − β1)π
0 [

10−4 fm3
]

11.2 . . . 8.9 −1.9(2)

• π± polarisabilities accurately reproduced (also in
agreement with COMPASS measurement)

• π0 polarisabilities require inclusion of higher
intermediate states in the LHC, especially ω

• relation to (g − 2)µ only indirect (different kinematic
region)
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4 ππ-rescattering: D-waves and higher left-hand cuts

Extension to D-waves

• D-waves describe f2(1270) resonance in terms of ππ
rescattering

• inclusion of higher left-hand cuts (ρ, ω resonances)
necessary to reproduce observed f2(1270) resonance
peak in on-shell γγ → ππ

• NWA for vector resonance LHC with V πγ interaction

L = eCV ε
µνλσFµν∂λπVσ

• coupling CV related to decay width Γ(V → πγ)

• off-shell behaviour described by resonance transition
form factors FV π(q2)
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4 ππ-rescattering: D-waves and higher left-hand cuts

Topologies in the Omnès solution

Omnès solution for γ∗γ∗ → ππ with higher left-hand
cuts provides the following:

= + +

︸︷︷︸ ︸︷︷︸
recursive PWE, no LHC
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4 ππ-rescattering: D-waves and higher left-hand cuts

Modified Omnès representation
→ García-Martín, Moussallam 2010

hi(s) = Ni(s) +
Ω(s)

π

{∫ 0

−∞
ds′

Kij(s, s
′)Imhj(s

′)

Ω(s′)

+

∫ ∞
4M2

π

ds′
Kij(s, s

′) sin δ(s′)Nj(s
′)

|Ω(s′)|

}

• Ni(s): only Born term as inhomogeneity

• higher left-hand cuts in first dispersion integral: fix
polynomial ambiguities of Lagrangian formulation

• Ω(s): Omnès function with ππ phase δ(s) as input

• Kij(s, s
′): integration kernels from the full 5× 5

D-wave Roy–Steiner system
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4 ππ-rescattering: D-waves and higher left-hand cuts

“Anomalous thresholds” for large space-like q2
i

Left-hand cut structure of resonance partial waves:
s

s−cut s+
cut

sa sb

• two logarithmic branch cuts (−∞, s−cut], [s+
cut, 0]

• square-root branch cut on second sheet, but extends
into the physical sheet for q2

1q
2
2 > (M2

R −M2
π)2
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4 ππ-rescattering: D-waves and higher left-hand cuts

“Anomalous thresholds” for large space-like q2
i

• deformation of integration contour for
q2

1q
2
2 > (M2

R −M2
π)2

• anomalous singularity sa behaves for some D-wave
contributions like (sa − s)−7/2

• contour integral around sa does not vanish and
makes result finite

• cancellations require careful numerical
implementation
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4 ππ-rescattering: D-waves and higher left-hand cuts

Higher left-hand cuts and pion polarisabilities

consider quadrupole polarisabilities:

sum rule ChPT
→ Gasser et al. (2005, 2006)

(α2 − β2)π
± [

10−4 fm5
]

19.9 . . . 20.1 16.2 [21.6]

(α2 − β2)π
0 [

10−4 fm5
]

26.3 . . . 27.1 37.6(3.3)

• π0 polarisabilities again in bad agreement

• add ρ, ω left-hand cut contribution:

(α2 − β2)π
±
V = 0.9× 10−4 fm5 ,

(α2 − β2)π
0

V = 10.3× 10−4 fm5

• π0 polarisabilities restored, π± barely affected
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4 ππ-rescattering: D-waves and higher left-hand cuts

Higher intermediate states

• in the limit of narrow widths, resonance contributions
reduce to pole contributions with resonance transition
form factors as input
→ Pauk, Vanderhaeghen (2014); Danilkin, Vanderhaeghen (2017)

• compare to dispersive treatment and use f2(1270) as
a test case

• BTT Lorentz decomposition for scalar, axial, and
tensor resonances⇒ avoid kinematic singularities

• dispersive treatment requires residue in HLbL basis
(differences to Lagrangian model formulation)
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4 ππ-rescattering: D-waves and higher left-hand cuts

Higher intermediate states

• our 9 HLbL sum rules for (g − 2)µ kinematics allow
different dispersive representations → JHEP 04 (2017) 161

• single resonance states not uniquely defined unless
sum rules are fulfilled

• for forward scattering, one sum rule reduces to known
forward sum rule → Pascalutsa, Pauk, Vanderhaeghen (2012)
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5 Outlook

Conclusion and outlook

• precise prediction for S-wave ππ-rescattering
contribution with pion-pole left-hand cut:

aππ,π-pole LHC
µ,J=0 = −8(1)× 10−11

• D-wave contribution work in progress: requires
inclusion of higher left-hand cuts

• compare to narrow-width approximation of f2(1270)
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