g-2 workshop Mainz:

Overview and Status of Measurements of $F_{3\pi}$ at COMPASS

D. Steffen on behalf of the COMPASS collaboration

19.06.2018

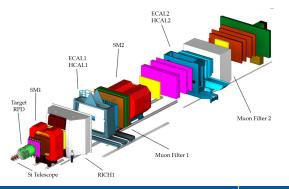
sponsored by:

Federal Ministry of Education and Research

Introduction

- Overview of the COMPASS experiment
- ChPT and Primakoff reactions
- 2 The Chiral Anomaly $F_{3\pi}$ Theoretical Background
- **3** $F_{3\pi}$ Measurement at COMPASS
 - Primakoff Measurements at COMPASS
 - Event Selection and Background Subtraction
 - Normalization to the Pion Flux
- 4 Conclusion

 $F_{3\pi}$ at COMPASS

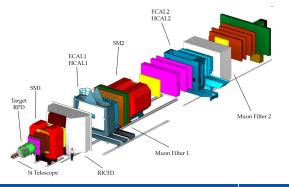

CERN

COmmon Muon Proton Apparatus for Structure and Spectroscopy

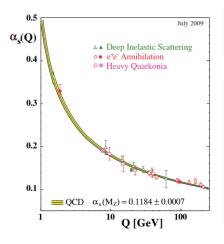
COMPASS - Overview

- Fixed target experiment at SPS accelerator at CERN (M2 beamline)
- ▷ High intensity beams: max. $4 \cdot 10^7 \frac{\text{muons}}{\text{s}}$; $2 \cdot 10^7 \frac{\text{hadrons}}{\text{s}}$
- ▷ Various physics programs
- ▷ 2 Primakoff runs (2009 and 2012)

Setup in 2009


COMPASS - Overview

spectrometer setup:


- ▷ Length: 60m
- Two-stage magnetic spectrometer
- Each stage: Tracking, dipole magnet, calorimeters

- Fixed target experiment at SPS accelerator at CERN (M2 beamline)
- $\vdash \text{ High intensity beams: max. } 4 \cdot 10^7 \frac{\text{muons}}{\text{s}};$ $2 \cdot 10^7 \frac{\text{hadrons}}{\text{s}};$
- Various physics programs
- ▷ 2 Primakoff runs (2009 and 2012)

Strong Interaction in the Standard Model

At high energies (small distances) $\alpha_s \ll 1 \Rightarrow$ QCD processes calculable via

perturbation expansion in α_s

At low energies (long distances)

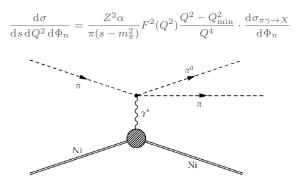
- $$\label{eq:asymptotic} \begin{split} \triangleright \ \ \alpha_s = \mathcal{O}(1) \Rightarrow \text{ perturbation expansion} \\ \text{ in } \alpha_s \text{ not applicable} \end{split}$$
- Alternatives for theoretical predictions:
 - Numerical simulation of QCD (lattice QCD)
 - Effective Field Theories

Chiral Perturbation Theory (ChPT)

ChPT is the low-energy approximation of QCD

- \triangleright Fundamental degrees of freedom = hadrons
- Model-independent approach to describe meson-meson, meson-baryon, and meson-photon interactions
- $\triangleright~\mathsf{ChPT}$ provides predictions \Rightarrow can be tested by experiments

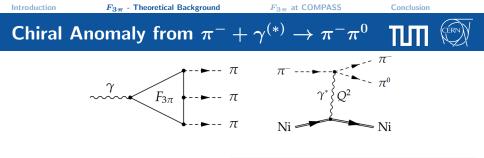
Goal of COMPASS experiment

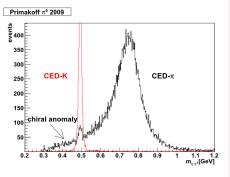

 $\triangleright~$ Test ChPT predictions for pion-photon reactions $\pi^-\gamma \to X^-$ with various final states X^-

$$\pi^{-} + \gamma^{(*)} \to \begin{cases} \pi^{-} + \gamma \\ \pi^{-} + \pi^{0} \\ \pi^{-} + \pi^{0} + \pi \\ \dots \end{cases}$$

Compton reaction, pion polarisabilities single-pion production, chiral anomaly double-pion prod., chiral tree & loop

Primakoff Reaction - Overview


- $\triangleright~$ First proposed by H. Primakoff to study π^0 lifetime via $\gamma\gamma\to\pi^0\to\gamma\gamma$
- particle-photon collisions with the photon provided by the strong Coulomb field of a nucleus.
- $\triangleright\,$ Weizsäcker and Williams: Coulomb field of relativistic charge $\approx\,$ flux of quasi-real photons



Introduction

- Overview of the COMPASS experiment
- ChPT and Primakoff reactions
- 2 The Chiral Anomaly $F_{3\pi}$ Theoretical Background
- 3) $F_{3\pi}$ Measurement at COMPASS
 - Primakoff Measurements at COMPASS
 - Event Selection and Background Subtraction
 - Normalization to the Pion Flux
- 4 Conclusion

J.Friedrich, CERN-THESIS-2012-333

- \triangleright $F_{3\pi} =$ coupling constant for $\gamma \to 3\pi$
- ▷ Leading Order ChPT: $F_{3\pi} = 9.78(05) \text{GeV}^{-3}$ (verified up to 10% level)
- $\triangleright~{\rm Determines~cross~section}$ in Primakoff $\pi^-{\rm Ni} \to \pi^-\pi^0{\rm Ni}$ reaction
 - low-mass tail in 2π invariant mass spectrum not driven by any resonance but by chiral anomaly
 - Problem: Dominant contribution of $\rho(770) \rightarrow \pi^- \pi^0$ affects also low masses

$F_{3\pi}$ in $\pi^-\pi^0$ -Invariant-Mass Spectrum

Problem:

Dominant contribution of $\rho(770) \rightarrow \pi^-\pi^0$ affects also low masses

Solution:

Extension of ChPT amplitude using dispersion relations

- \Rightarrow Inclusion of $\rho(770)$ -resonance into amplitude
- \Rightarrow Amplitude valid up to $1.2\,{\rm GeV/c^2}$:

$$\sigma(s) = \frac{(s - 4M_{\pi}^2)^{3/2}(s - M_{\pi}^2)}{1024\pi\sqrt{s}} \int_{-1}^{1} \mathrm{d}z(1 - z^2) |\mathcal{F}(s, t, u)|^2$$

Comparison with theoretical value at leading order of chiral expansion:

$$F_{3\pi} = \frac{e \cdot N_C}{12\pi^2 F_\pi^3} = 9.78(05) \text{GeV}^{-3}$$

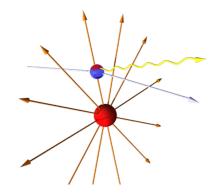
Sakkas, Hoferichter, Kubis, PRD 86 (2012) 116009

1 Introduction

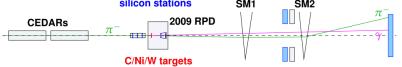
- Overview of the COMPASS experiment
- ChPT and Primakoff reactions
- 2 The Chiral Anomaly $F_{3\pi}$ Theoretical Background

3 $F_{3\pi}$ Measurement at COMPASS

- Primakoff Measurements at COMPASS
- Event Selection and Background Subtraction
- Normalization to the Pion Flux
- 4 Conclusion

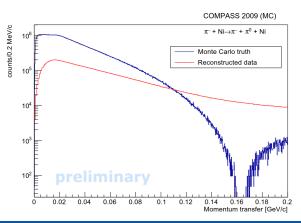

 $F_{3\pi}$ at COMPASS

Target Choice


- $\begin{tabular}{ll} & \mathsf{Primakoff} \ \mathsf{cross-section:} \ \propto Z^2 \\ & \Rightarrow \mathsf{large} \ Z \end{tabular} \end{tabular}$
- \triangleright Very high Z (e.g. Pb): large corrections from 2γ processes and from screening
- Optimum choice: medium heavy Ni target

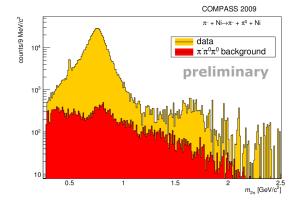
Artistic depiction of $\pi^- + {\rm Ni} \to \pi^- + \gamma + {\rm Ni}$ via the Primakoff process

- $\triangleright\,$ 190 GeV negative hadron beam: 96.8% π^- , 2.4% K^- , 0.8% \bar{p}
- beam particle identification by Cherenkov detectors
- $\triangleright 4 \,\mathrm{mm}$ Ni target disk ($\approx 25\%$ R.L.)
- \triangleright Measure scattered π^- and produced photons (number depends on final state)
- Select exclusive events at lowest momentum transfers
- ▷ Small scattering angles require high resolution
 - Spatial resolution of tracking $\approx 10\,\mu{\rm m}$
 - Angular resolution of ECAL $\approx 30 \,\mu \mathrm{rad}$


Introduction

Measurement of $F_{3\pi}$ at COMPASS

Weizsäcker-Williams factorization (equivalent-photon approximation)


$$\frac{\mathrm{d}\sigma}{\mathrm{d}s\,\mathrm{d}Q^2\,\mathrm{d}\Phi_n} = \frac{Z^2\alpha}{\pi(s-m_\pi^2)}F^2(Q^2)\frac{Q^2-Q_{\min}^2}{Q^4}\cdot\frac{\mathrm{d}\sigma_{\pi\gamma\to X}}{\mathrm{d}\Phi_n}$$

- 4-momentum transfer distribution smeared due to interaction with matter and limited detector resolution
- Prominent peak at low q (despite resolution effect)
- \triangleright Primakoff dominant production mechanism of $\pi^-\pi^0$ at low q

Background Estimate

$$\triangleright K^{-} \text{ decay into } \pi^{-}\pi^{0}, e^{-}\bar{\nu}_{e}\pi^{0}, \mu^{-}\bar{\nu}_{\mu}\pi^{0}$$

$$\triangleright K^{-} \text{ decay into } \pi^{-}\pi^{0}\pi^{0}$$

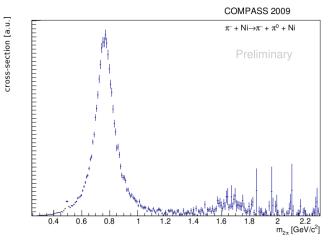
$$\triangleright \pi^{-} + \text{Ni} \rightarrow \pi^{-} + \pi^{0} + \pi^{0} + \text{Ni}$$

Distribution for the invariant mass of the 2π final state and the estimated background

Luminosity Determination

- $\triangleright \ \ \, {\rm Cross-section\ calculation\ needs\ integrated\ luminosity\ \ \, } {\cal L}_{\pi} \\ N_{\pi} = {\cal L}_{\pi} \cdot \sigma \cdot \epsilon$
- ▷ Luminosity determination via free kaon decays:
 - Kaon lifetime known with high accuracy
 - Kaon fraction in M2 beam known with 5% accuracy
 - From number of kaon decays + acceptance corrections (determined from MC simulation) ⇒ integrated number of pions

▷ Using
$$K^- \to \pi^- \pi^0$$
 for 2009 data: $6.0 \pm 0.7 \,\mathrm{nb}^{-1}$
▷ Using $K^- \to \pi^- \pi^0 \pi^0$ for 2009 data: $4.09 \pm 0.27 \,\mathrm{nb}^{-1}$
▷ Using $K^- \to \pi^- \pi^- \pi^+$ for 2004 data \Rightarrow no issue found,
employed for several analysis

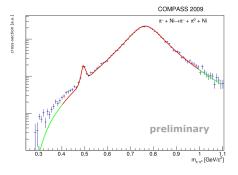


 $F_{3\pi}$ at COMPASS

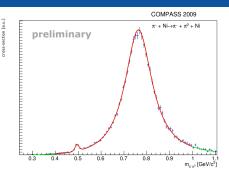
Conclusion

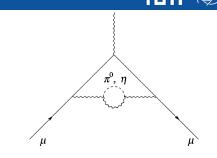
Invariant Mass Distribution

Final normalized and acceptance-corrected invariant mass distribution with subtracted background



Fit results

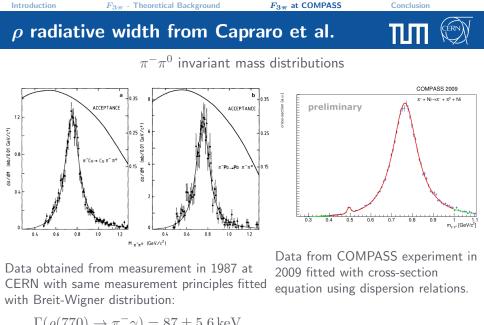

- ▷ Fit of theoretical model in good agreement with data
- Statistical uncertainty is $\mathcal{O}(1\%)$ \triangleright
- Absolute scale (normalization to \triangleright pion flux) not yet determined



$$\mathcal{F}(s,t,u) = C_2^{(1)} \mathcal{F}_2^{(1)}(s) + C_2^{(2)} \mathcal{F}_2^{(2)}(s)$$

 \Rightarrow 2 fit parameters

Fit results



- Fit of theoretical model in good agreement with data
- $\triangleright~$ Statistical uncertainty is $\mathcal{O}(1\%)$
- Absolute scale (normalization to pion flux) not yet determined

Sakkas, Hoferichter, Kubis, PRD 86 (2012) 116009

$\rho(770)$ included in theoretical model

- $\label{eq:cancellation} \begin{array}{l} \triangleright \ \mbox{Can calculate radiative coupling} \\ \rho(770) \rightarrow \pi^- \gamma \ \mbox{from} \ \rho(770) \ \mbox{yield} \end{array}$
- \triangleright Contributes to hadronic vacuum polarization terms in calculations of g-2 of e and μ

$$(\rho(110) \rightarrow \pi^{-1}\gamma) = 81 \pm 3.0 \text{ KeV}$$

Capraro et al. In: (1987) NP B288 659

1 Introduction

- Overview of the COMPASS experiment
- ChPT and Primakoff reactions
- 2 The Chiral Anomaly $F_{3\pi}$ Theoretical Background
- **3** $F_{3\pi}$ Measurement at COMPASS
 - Primakoff Measurements at COMPASS
 - Event Selection and Background Subtraction
 - Normalization to the Pion Flux

CERN

Conclusion

COMPASS has acquired large Primakoff data set

- $\triangleright\,$ Measurements from channel $\pi^- + \gamma^{(*)} \rightarrow \pi^- \pi^0 \colon$
 - Chiral anomaly $\gamma \to 3\pi$
 - Radiative width of light-quark isovector mesons ($\rho(770)^- \rightarrow \pi^- \gamma)$
- ▷ Data from run 2009 give consistent picture:
 - Fit in good agreement with data
 - Normalizing to radiative width of $\rho(770)$ yields value for $F_{3\pi}$ in agreement with theoretical result
- \triangleright 4x larger data set to come from 2012 data
- \triangleright Possibility to extend analysis to measure radiative couplings of excited ρ states