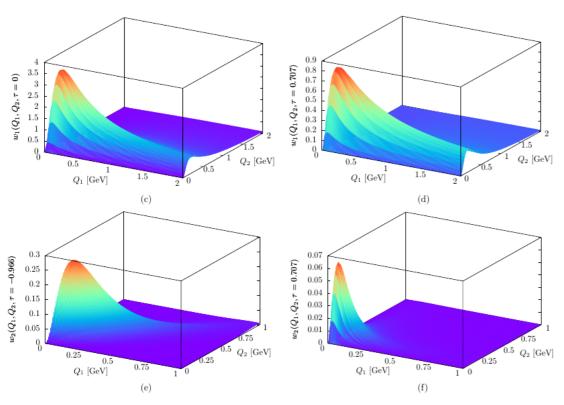


Measurement of the space-like π^0 transition form factor at Π

June 19, 2018 | Christoph Florian Redmer for the BESIII collaboration


Second Workshop of the Muon g-2 Theory Initiative

Relevant Energy Range

3D integral representation for PS-pole contribution: (Nyffeler, PRD94,053006, 2016)

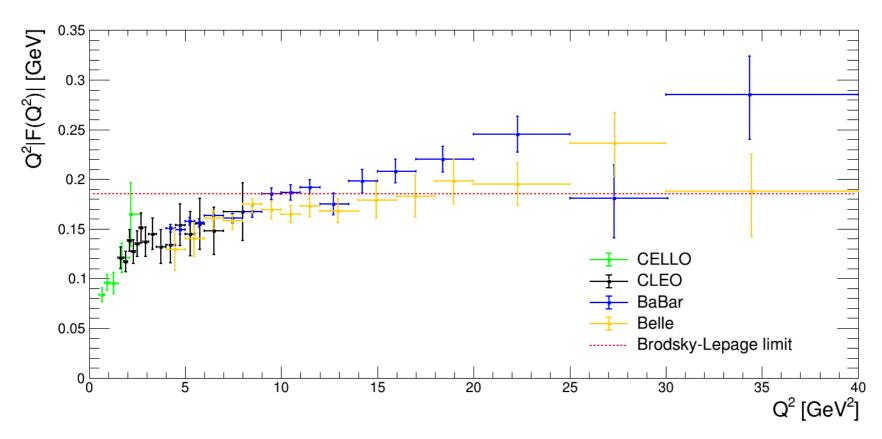
$$\mathsf{a}_{\mu}^{\mathsf{HLbL};\pi^{0(1)}} = \int_{0}^{\infty} \mathsf{dQ}_{1} \int_{0}^{\infty} \mathsf{dQ}_{2} \int_{-1}^{1} \mathsf{d}\tau \ \mathsf{w}_{1}(\mathsf{Q}_{1},\mathsf{Q}_{2},\tau) \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-\mathsf{Q}_{1}^{2},-(\mathsf{Q}_{1}+\mathsf{Q}_{2})^{2}) \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-\mathsf{Q}_{2}^{2},0)$$

$$\mathsf{a}_{\mu}^{\mathsf{HLbL};\pi^{0(2)}} = \int_{0}^{\infty} \mathsf{dQ}_{1} \int_{0}^{\infty} \mathsf{dQ}_{2} \int_{-1}^{1} \mathsf{d}\tau \ \mathsf{w}_{2}(\mathsf{Q}_{1},\mathsf{Q}_{2},\tau) \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-\mathsf{Q}_{1}^{2},-\mathsf{Q}_{2}^{2}) \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-(\mathsf{Q}_{1}+\mathsf{Q}_{2})^{2},0)$$

- Universal weight functions w₁, w₂
- Form factor dependence F

Relevant momentum region:

0.25 - 1.25 GeV


June 19, 2018

C.F. Redmer - π^0 TFF at BESIII

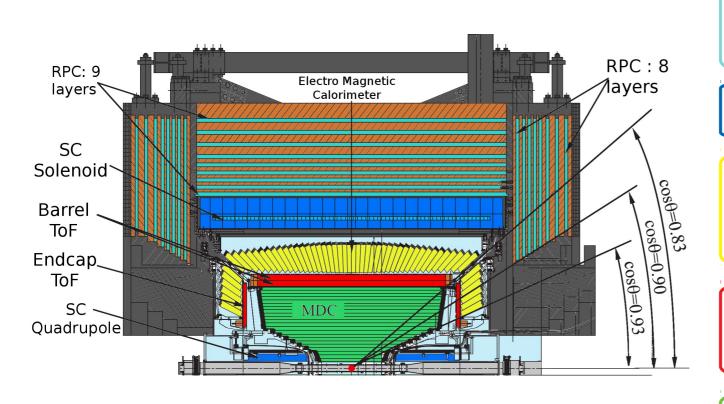
g-2 Workshop, Mainz

Existing Data

- Recent results from B-factories cover only large Q² (5 < Q² [GeV²] < 40)</p>
 - Discrepancy for π^0 between BaBar and Belle
- Data scarce at lowest Q²
 - Region of relevance for (g-2)μ

CELLO: Z.Phys.C49 (1991) 401 CLEO: Phys.Rev.D57 (1998) 33

BaBar: Phys.Rev.D80 (2009) 052002


Phys.Rev.D84 (2011) 052001

Belle: Phys.Rev.D86 (2012) 092007

BESIII Detector

NIM A614 (2010) 345

Muon Chambers

- 8 9 layers of RPC
- p>400 MeV/c
- $\delta R\Phi = 1.4 \sim 1.7 \text{ cm}$

Superconducting Magnet

1 T magnetic field

EM Calorimeter (EMC)

- 6240 CsI(TI) crystals
- $\sigma(E)/E = 2.5\%$
- $\sigma_{7,0}(E) = 0.5 0.7 \text{ cm}$

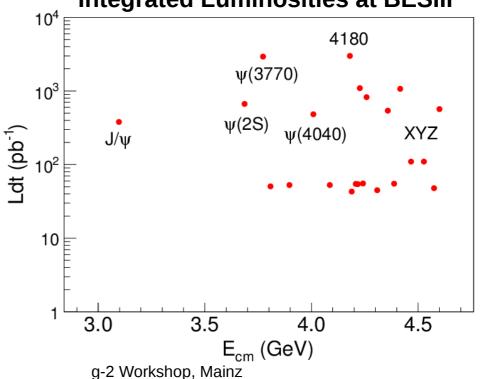
Time-of-flight system (TOF)

- $\sigma(t) = 90ps$ (barrel)
- $\sigma(t) = 110ps$ (endcap)

Drift Chamber

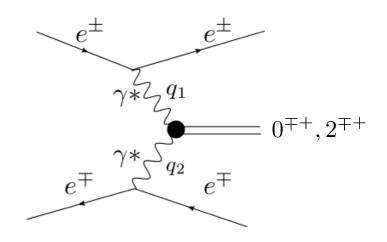
(MDC)

- $\sigma(p)/p = 0.5\%$
- $\sigma_{\text{dE/dx}} = 6.0\%$


BESIII Data

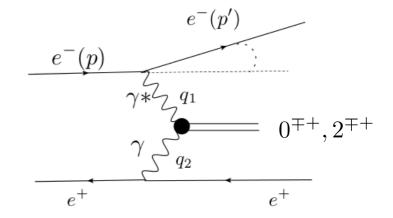
- Operated at BEPCII collider
 - $2.0 \le \sqrt{s} \; [GeV] \le 4.6$
 - Design luminosity achieved
 - $\mathcal{L} = 1.0 \times 10^{33} \text{cm}^{-2} \text{s}^{-1} \text{ at } \psi(3770)$
- Large data sets for
 - Charmonium spectroscopy
 - Charm physics
 - Light hadrons
 - τ and R-scan

 $\gamma\gamma$ studies mainly on 2.9 fb⁻¹ at $\psi({\rm 3770})$



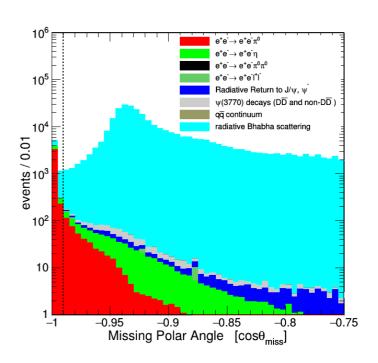
Integrated Luminosities at BESIII

Two-Photon Collisions


- Exchange of two photons in e⁺e⁻ collisions
- Pseudoscalar, axial, and tensor states accessible
- M_x << √s</p>
- $\sigma \propto \alpha^2 \ln^2 E$
- ${\color{red} \bullet} \ \sigma \propto F^2(Q_1^2,Q_2^2)$, with $Q_i^2=-q_i^2$
- Forward peaked kinematic
 - Experimentally challenging

JG|U

Single-Tag Measurements


- Reconstruct
 - only one scattered lepton
 - Produced system
- Unmeasured lepton from momentum conservation
 - Require scattering angle to be small
 - Small virtuality
 - $F(q_1^2, q_2^2) \to F(q_1^2, 0) \to F(q^2)$

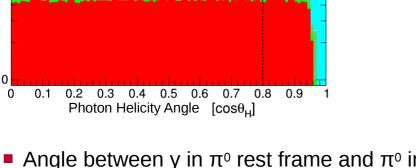
Example: π^0 transition form factor at BESIII

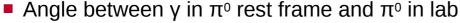
Monte Carlo, L_{int} : 2.93 fb⁻¹ @ Ψ(3770)

Tagged Lepton: ${\bf e}^{\scriptscriptstyle +}$ Reconstructed decay: $\pi^0 \to \gamma \gamma$

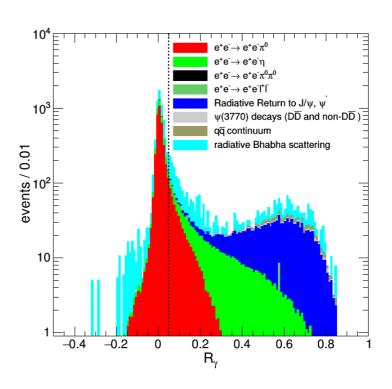
Space-like π⁰ Transition Form Factor

Event selection:

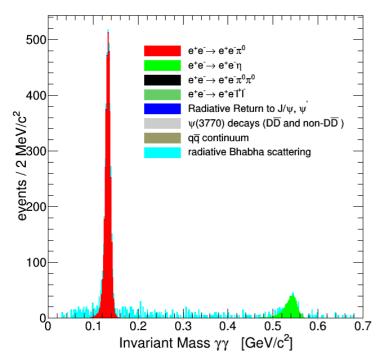

Exactly one lepton

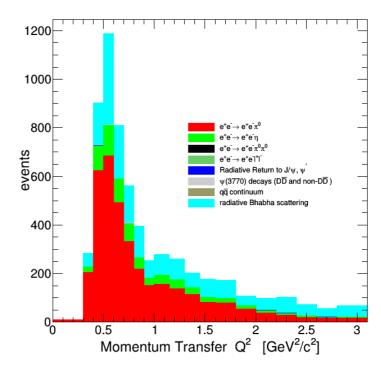

Two to four photons

■ $\cos\theta_{\text{untagged}} < -0.99$



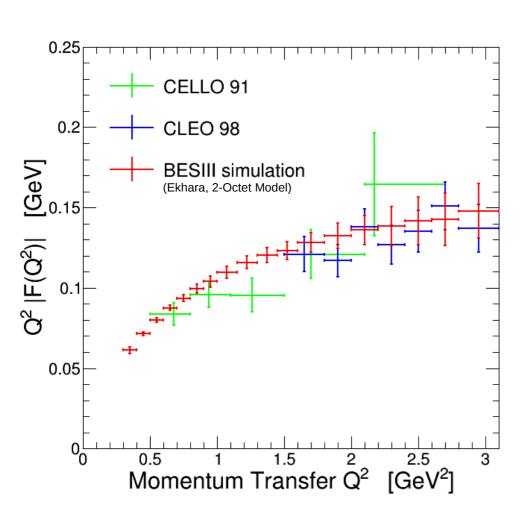
BESIII Monte Carlo, Ψ(3770) $: 2.93~{
m fb}^{ ext{-}1}$, Tagged Lepton: ${
m e}^{ ext{+}}$ $e^+e^- \rightarrow e^+e^-\pi^0$ 10^{3} $e^+e^- \rightarrow e^+e^-l^+l^-$ Radiative Return to J/ψ, ψ events / 0.01 $\psi(3770)$ decays (D \overline{D} and non-D \overline{D}) qq continuum 0.2 0.3 0.4 0.5 0.6 0.7 0.8


■
$$\cos\theta_{\text{Helicity}} < 0.8$$


- Radiative effects result in wrong Q²
- Useful observable: $R_{\gamma} = \frac{\sqrt{s} E_{e^{\pm}\pi^{0}}^{CMS} p_{e^{\pm}\pi^{0}}^{CMS}}{\sqrt{s}}$
- Reject events with $R_{\gamma} > 0.05$

JG U Space-like π⁰ Transition Form Factor

BESIII Monte Carlo, $\Psi(3770)$ L_{int}: 2.93 fb⁻¹ , Tagged Lepton: e⁺



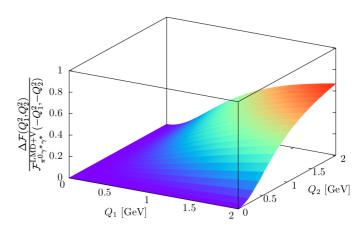
- lacktriangle Analysis useful for π^0 and $\,\eta\,$
- Monte Carlo description of background incomplete
 - Small angle Bhabha scattering

- Bkg subtr. by counting π^0 yield per Q^2 bin
- Divide out point-like cross section for |F(Q²)|²

JG U Space-like π⁰ Transition Form Factor

- 2.9 fb-1 at Ψ(3770) analyzed
- Covering $0.3 \le Q^2 [\text{GeV}^2] \le 3.1$
- Statistical accuracy:
 - Competitive up to 3.1 GeV²
 - Unprecedented below 1.5 GeV²

Most relevant for a_{μ}^{hLbL} !


- Systematic Uncertainties
 - Dominated by background subtraction
- Radiative effects to be included
 - Based on Ekhara 3.0

Expecting the release of preliminary result any minute!

Double-tag measurements

- Measurement of $F_{\gamma^*\gamma^*\pi^0}(Q_1^2,Q_2^2)$ never done before!
 - Contains full information
 - model independent input

- BESIII collected > 10 fb⁻¹ at $3.77 < \sqrt{s}$ [GeV] < 4.6
 - Double-tag measurement possible
 - Low statistics expected
 - 1st Step: Test TFF models
 - e.g. VMD vs. LMD+V

Calculations: A. Nyffeler Phys.Rev. D94, 2016, 053006

Summary

- Two-photon physics program at BESIII to measure space-like meson TFF
 - Single-tag measurements for singly virtual TFF
 - π^0 TFF measured in 2.93 fb-1 at \sqrt{s} =3.773 GeV
 - 0.3 < Q² [GeV²] < 3.1
 - unprecedented statistical accuracy below Q² < 1.5 GeV²
 - Preliminary results awaiting release
 - Analysis of η , η' , and $\pi^0\pi^0/\pi^+\pi^-$ ongoing
 - Double-tag measurements started $\gamma^* \gamma^* \to \pi^0$