MUonE status: theory and experiment

C.M. Carloni Calame

INFN Pavia, Italy

Second Plenary Workshop of the Muon g-2 Theory Initiative

Helmholtz-Institut Mainz, June 18-22, 2018

Outline

- → Introduction to the MUonE project
- → QED radiative corrections to $\mu e \rightarrow \mu e$: NLO calculation (and phenomenology)
- \rightsquigarrow Theory status and progress
- → Experimental status: challenges, test beams at CERN
- → Plans for the near future

Relevant literature:

- κ G. Abbiendi *et al.*, Measuring the leading hadronic contribution to the muon g-2 via μe scattering Eur. Phys. J. C 77 (2017) no.3, 139 - arXiv:1609.08987 [hep-ex]
- C. M. Carloni Calame, M. Passera, L. Trentadue, G. Venanzoni, *A new approach to evaluate the leading hadronic corrections to the muon g-2* Phys. Lett. B 746 (2015) 325 - arXiv:1504.02228 [hep-ph]

Master formula

Standard approach

$$\begin{aligned} a_{\mu}^{\text{HLO}} &= \frac{1}{4\pi^3} \int_{4m_{\pi}^2}^{\infty} ds \; K(s) \; \sigma_{e^+e^- \to had}^0(s) \\ K(s) &= \int_0^1 \frac{x^2(1-x)}{x^2 + (1-x)\frac{s}{m_{\mu}^2}} \end{aligned}$$

Alternatively (exchanging s and x integrations in a^{HLO}_µ)

$$a_{\mu}^{\text{HLO}} = \frac{\alpha}{\pi} \int_{0}^{1} dx (1-x) \Delta \alpha_{\text{had}}[t(x)]$$
$$t(x) = \frac{x^{2} m_{\mu}^{2}}{x-1} < 0$$

t Hadrons

Lautrup, Peterman, De Rafael, Phys. Rept. 3 (1972) 193

* $\Delta \alpha_{had}(t)$ can be directly measured in a (single) experiment involving *t*-channel (space-like) scattering

Arbuzov et al. EPJC 34 (2004) 267

Abbiendi et al. (OPAL) EPJC 45 (2006) 1

From time-like to space-like evaluation of a_{μ}^{HLO}

 → Time-like: combination of many experimental data sets, control of RCs better than O(1%) on hadronic channels required.
 → Space-like: in principle, one single experiment, it's a one-loop effect, very high accuracy needed.

General considerations

• integrand function $(1-x)\Delta\alpha_{had}[t(x)]$

C.M. Carloni Calame (INFN, Pavia)

General considerations

- To get $\Delta \alpha_{had}(t)$, the goal is to measure the (absolute) running of $\alpha_{QED}(t)$
 - \rightarrow The idea: Bhabha events at e^+e^- (low-energy) colliders [original proposal] CC, Passera, Trentadue, Venanzoni PLB 746 (2015) 325
 - \rightarrow or μe scattering events in a fixed target experiment [new proposal] Abbiendi *et al.* EPJC 77 (2017) no.3, 139

$$\alpha(t) = \frac{\alpha}{1 - \Delta\alpha_{\text{other}}(t) - \Delta\alpha_{\text{had}}(t)} \qquad \Delta\alpha_{\text{had}}(t) = 1 - \Delta\alpha_{\text{other}}(t) - \frac{\alpha}{\alpha(t)}$$

Strategy:

- measure $\Delta \alpha_{had}(t)$ within the exp. range
- get large |t| values from elsewhere (time-like data, lattice)

see next talk by Marina

- fit $\Delta \alpha_{had}(t)$
- integrate to get a^{HLO}_µ

Roughly, to be competitive with the current evaluations, $\Delta\alpha_{\rm had}(t)$ needs to be know at the sub-% level

$\mu e ightarrow \mu e$ scattering in fixed target experiment

Abbiendi et al. EPJC 77 (2017) no.3, 139

Part of the CERN Physics Beyond Colliders program

 \mapsto A 150 GeV high-intensity (~ 10⁷ μ 's/s) muon beam is available at CERN NA

 \mapsto Muon scattering on a low-Z target ($\mu e \rightarrow \mu e$) looks an ideal process

 \star it is a "pure" t-channel process \rightarrow

$$\frac{d\sigma}{dt} = \frac{d\sigma_0}{dt} \left| \frac{\alpha(t)}{\alpha} \right|^2 \qquad \qquad \frac{1}{2} \frac{\delta\sigma}{\sigma} \simeq \frac{\delta\alpha}{\alpha} \simeq \delta\Delta\alpha_{\rm had}, \qquad \Delta\alpha_{\rm had}(t_{peak}) = \mathcal{O}(10^{-3})$$

★ Assuming a 150 GeV incident muon beam we have

 $s \simeq 0.164 \text{ GeV}^2$ $-0.143 \lesssim t < 0 \text{ GeV}^2$ $0 < x \lesssim 0.93$ it spans the peak!

Pros:

it can cover 87% of the a_{μ}^{HLO} integral!

- \star existing μ -beam at CERN with all requirements (M2 beam line)
- highly boosted kinematics
- ★ the same detector and process can be exploited for signal and normalization: for $x \leq 0.3$, $\Delta \alpha_{had}(t) < 10^{-5} \rightarrow$ normalization region

Cons:

 \star high accuracy needed: control of systematics at the 10^{-5} level

$\mu e ightarrow \mu e$ scattering in fixed target experiment

- \star The setup is designed to measure e and μ angles with the highest accuracy
- Modular apparatus: each module has $\simeq 1$ cm Beryllium target and 3/4 Silicon strips (state-of-art) detectors (hit resolution $\simeq 10 \ \mu$ m)
- $\simeq 60$ modules (distributed target)
- acceptance: $\theta_e \le 45$ mrad (i.e. $E_e \ge 0.5$ GeV), $\theta_\mu \le 5$ mrad. Expected angular resolution 0.02 mrad

θ_{μ} - θ_{e} correlation (elastic events)

Pure kinematics

Extracting $\Delta \alpha_{\rm had}(t)$ from $\mu e ightarrow \mu e$ elastic data

ightarrow A template fitting procedure needs to be designed for $\Delta lpha_{
m had}(t)$

Theory: a first step, radiative corrections at NLO in QED

- The µe cross section and distributions must be known as precisely as possible
 → radiative corrections (RCs) are mandatory
- * First step are QED $O(\alpha)$ (i.e. QED NLO, next-to-leading order) RCs

The NLO cross section is split into two contributions,

 $\sigma_{NLO} = \sigma_{2\to 2} + \sigma_{2\to 3} = \sigma_{\mu e \to \mu e} + \sigma_{\mu e \to \mu e\gamma}$

 $\label{eq:linear_states} \begin{array}{l} \longmapsto \mbox{ IR singularities are regularized with a vanishingly small photon mass λ} \\ \longmapsto \mbox{ } [2 \rightarrow 2]/[2 \rightarrow 3] \mbox{ phase space splitting at an arbitrarily small γ-energy cutoff ω_s} \\ \bullet \mbox{ } \mu e \rightarrow \mu e \end{array}$

$$\sigma_{2\to 2} = \sigma_{LO} + \sigma_{NLO}^{virtual} = \frac{1}{F} \int d\Phi_2 (|\mathcal{A}_{LO}|^2 + 2\Re[\mathcal{A}_{LO}^* \times \mathcal{A}_{NLO}^{virtual}(\boldsymbol{\lambda})])$$

•
$$\mu e \rightarrow \mu e \gamma$$

$$\sigma_{2\to3} = \frac{1}{F} \int_{\omega>\lambda} d\Phi_3 |\mathcal{A}_{NLO}^{1\gamma}|^2 = \frac{1}{F} \left(\int_{\lambda<\omega<\omega_s} d\Phi_3 |\mathcal{A}_{NLO}^{1\gamma}|^2 + \int_{\omega>\omega_s} d\Phi_3 |\mathcal{A}_{NLO}^{1\gamma}|^2 \right)$$
$$= \Delta_s(\lambda, \omega_s) \int d\sigma_{LO} + \frac{1}{F} \int_{\omega>\omega_s} d\Phi_3 |\mathcal{A}_{NLO}^{1\gamma}|^2$$

 the integration over the 2/3-particles phase space is done with MC techniques and fully-exclusive events are generated

NLO: method and cross-checks

- Calculation performed in the on-shell renormalization scheme
- Full mass dependency kept everywhere, fermions' helicities kept explicit
- Diagrams manipulated with the help of FORM, independently by at least two of us [perfect agreement]
 J. Vermaseren. https://www.nikhef.nl/~form

A. Denner, S. Dittmaier, L. Hofer, https://collier.hepforge.org

- UV finiteness and λ independence verified with high numerical accuracy
- 3 body phase-space cross-checked with 3 independent implementations [perfect agreement]
- Comparison with past/present independent results
 [all good so far]
 TV Kukhta N.M. Shumaika and S

T. V. Kukhto, N. M. Shumeiko and S. I. Timoshin, J. Phys. G 13 (1987) 725

D. Y. Bardin and L. Kalinovskaya, DESY-97-230, hep-ph/9712310

N. Kaiser, J. Phys. G 37 (2010) 115005

Fael, Passera

Also NLO weak RCs calculated [negligible]

$\mu e ightarrow \mu e$ at NLO, phenomenology

• The following setup is considered for $E_{\mu}^{beam} = 150 \text{ GeV} (\sqrt{s} \simeq 0.4055 \text{ GeV})$

Selection criteria

- acceptance: $E_e > 200 \text{ MeV}$ $\theta_e, \theta_\mu < 100 \text{ mrad}$
- → no cuts: only acceptance and, to select elastic events,
- \mapsto cut 1: $\Delta \theta_{\text{NA7}} < 0.5 \text{ mrad}$

 $[\Delta \theta_{\rm NA7} \simeq$ mimimum distance from the elastic curve in the θ_e - θ_μ plane]

NA7 Collaboration, NPB 277 (1986) 168

 \mapsto cut 2: acoplanarity $\equiv |\pi - (\phi_e - \phi_\mu)| < 3.5 \text{ mrad}$

\mapsto Only angular cuts are applied, besides acceptance

 μ^- - e^- angles correlation in the lab

• Sample of $\simeq 1$ M events at NLO

C.M. Carloni Calame (INFN, Pavia)

 $heta_e$ distribution, $\mu^-e^- o \mu^-e^-$

 $heta_{\mu}$ distribution, $\mu^- e^-
ightarrow \mu^- e^-$

Signal on θ_e and θ_μ distributions, $\mu^- e^- \rightarrow \mu^- e^-$

 \mapsto without cuts, NLO RCs destroy the sensitivity to $\Delta \alpha_{had}(q^2)$ on θ_e distribution $\mapsto \theta_{\mu}$ distribution is much more robust under RCs and applied cuts C.M. Cartoni Calame (INFN, Pavia)

- full NNLO QED corrections mandatory
 - NNLO: Missing MI for the planar 2-loop box diagrams computed.

from M. Passera's talk at Legnaro Labs, May 24 2018

• Also resummation will be needed and implemented into a MC generator

full NNLO QED corrections mandatory

Master integrals for the NNLO virtual corrections to μe scattering in QED: the planar graphs

Pierpaolo Mastrolia,^{a,b} Massimo Passera,^b Amedeo Primo^{a,b} and Ulrich Schubert^c

^a Dipartimento di Fisica ed Astronomia, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
^b INFN — Sezione di Padova, Via Marzolo 8, 35131 Padova, Italy
^c High Energy Physics Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A.
E-mail: pierpaolo.mastrolia@pd.infn.it, massimo.passera@pd.infn.it, amedeo.primo@pd.infn.it, schubertmielnik@anl.gov

JHEP 11 (2017) 198

Also resummation will be needed and implemented into a MC generator

full NNLO QED corrections mandatory

Master integrals for the NNLO virtual corrections to μe scattering in QED: the non-planar graphs

Stefano Di Vita,
 a Stefano Laporta,
 b,c Pierpaolo Mastrolia,
 b,c Amedeo Primo,
 d Ulrich Schubert e

^a INFN, Sezione di Milano, Via Celoria 16, 20133 Milano, Italy
^b Dipartimento di Fisica ed Astronomia, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
^c INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova, Italy
^d Department of Physics, University of Zürich, CH-8057 Zürich, Switzerland
^e High Energy Physics Division, Argonne National Laboratory, Argonne, IL 60439, USA *E-mail:* stefano.divita@mi.infn.it, stefano.laporta@pd.infn.it,
pierpaolo.mastrolia@pd.infn.it, aprimo@physik.uzh.ch,
schubertmielnik@anl.gov

on the arXiv soon, likely tomorrow

Also resummation will be needed and implemented into a MC generator

Theory activity

Muon-electron scattering: Theory kickoff workshop

4-5 September 2017 Padova

Europe/Rome timezone

- growing community, give a look at the talks on the agendas
- → link to the Padova Theory Kickoff Workshop
- → link to the MITP Topical Workshop
 - next hands-on workstop/thinkstart strongly focussed on NNLO & theory MCs
 Physik-Institut, University of Zurich, February 2019

Status of the experiment

- \mapsto Systematics challenges
 - ★ Multiple scattering
 - Tracking (alignment & mis-reconstruction)
 - \star Knowledge of incoming μ momentum distribution
 - ⋆ Background
 - ★ GEANT4 accuracy
- → Test beams at CERN
 - $\star~1^{\rm st}$ TB on H8 beam line, September 27-October 3 2017
 - performed with an adapted UA9 apparatus
 - Beam energies: e^- at 12 & 20 GeV, μ at 160 GeV
 - collected $\simeq 10^8$ events with Carbon targets at different thickness (2, 4, 8, 20 mm)
 - Check GEANT4 MSC predictions and populate the 2D $[\theta_e, \theta_\mu]$ plane
 - ★ 2nd TB on M2 line, after COMPASS detector, April-October 2018, on-going. Main goals:
 - collect a large sample of elastic events
 - study the effect of μ beam momentum mean and resolution
 - study uniformity of tracking eff. vs scattering angles
 - measure θ_e vs E_e

2017 test beam

Thanks to the UA9 Collaboration (particularly M. Garattini, R. laconageli, M. Pesaresi), J. Bernhard C target here µ/e beam 10,289mm mn Adapted UA9 apparatus 5 Si planes: 2 before and 3 after the target, 3.8x3.8 cm2 intrinsic resolution $\sim 100 \mu rad$

2018 test beam

Wents

$\mu e ightarrow \mu e$ events in 2017 test beam data

- 160 GeV muon beam, 8 mm Carbon target
- $\simeq 250$ events
- events are spread due to MS, beam spread and radiative events, no acoplanarity cut applied

- Analysis of TB data keeps going-on
- Encouraging comparisons of data vs GEANT4

courtesy of A. Principe

2017 TB data vs Geant4

from G. Venanzoni's talk at Physics Beyond Colliders WG meeting, June 13-14 2018

Future experimental plans

• 2018-2019

- Detector optimization studies: simulation; Test Run at CERN (2018); Mainz/Desy with few GeV e- (2019); Fermilab with 6ο GeV μ (TBC)
- Theoretical studies
- Set up a collaboration
- Letter of Intent to the SPSC
- 2020-2021
 - Detector construction and installation

2021-2024

 Data taking: staged detector for a first (pilot) run +2 years with full detector

from G. Venanzoni's talk at Physics Beyond Colliders WG meeting, June 13-14 2018

Conclusions and outlook

- → The MUonE project is part of the CERN Physics Beyond Colliders workshop
- \rightsquigarrow The aim is measuring $\Delta \alpha_{\rm had}(t)$ in the space-like region with high-accuracy
- → The goal is to provide a new independent evaluation of $a_{\mu}^{\rm HLO}$ with 0.3% statistical accuracy and a competitive systematic one in two years data taking on CERN M2 μ beam line
- \rightsquigarrow We will the use $\mu e \rightarrow \mu e$ process, scattering μ^{\pm} on e^{-} on a low-Z fixed target
- → The CERN M2 muon beam provides the necessary energy (150 GeV) and intensity ($\simeq 10^7$ muons/s)
- \rightarrow A lot of work is going on, both on the experimental and theory side
- The collaboration and interest are growing:
 CERN, Krakow, Novosibirsk, Liverpool, Manchester, UCL, Virginia
 INFN, Bologna, Ferrara, Milano Bicocca, Padova, Parma, Pavia, SNS Pisa
 - Next year, (at least) one post-doc position at INFN (Pavia) will be open, mainly dedicated to the MUonE project

SPARES

Bhabha scattering: $x \text{ vs } \theta_{e^{-1}}$

 $\mapsto x \operatorname{vs} \theta_{e^-}$ in Bhabha scattering

LO and NLO vacuum polarization diagrams

NLO virtual diagrams $\mathcal{A}_{NLO}^{virtual}$ (dependent on λ)

+ counterterms

NLO real diagrams $\mathcal{A}_{NLO}^{1\gamma}$

Photon energy in the center of mass, incoming μ^-

a peak at large photon energy is present with no cuts

• it is cut off by applying cuts

Any vacuum polarization effect is switched off, to quantify only NLO photonic RCs

\mapsto	μ^\pm LO	=	$1265.06\;\mu\mathrm{b}$	
\mapsto	μ^- NLO no cuts	=	1323.48 $\mu \mathrm{b}$	(+4.62%)
\mapsto	μ^- NLO cut 1	=	$1179.22\;\mu\mathrm{b}$	(-6.79%)
\mapsto	μ^- NLO cut 2	=	$1161.89~\mu{\rm b}$	(-8.16%)
\mapsto	μ^+ NLO no cuts	=	$1325.23~\mu\mathrm{b}$	(+4.76%)
\mapsto	μ^+ NLO cut 1	=	1180.71 $\mu \mathrm{b}$	(-6.67%)
\mapsto	μ^+ NLO cut 2	=	$1162.45~\mu\mathrm{b}$	(-8.11%)

→ Fael's calculation uses FKS subtraction for IR and collinear singularities

 \mapsto same level of agreement on t_{13} distribution

No LbL up to N³LO in μe scattering

is of $O(\alpha^5)$.

[i.e. $\mathcal{O}(\alpha^3)$ w.r.t. LO]