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1 The muon anomaly
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We split the integral into a low- and into a high-energy part
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Integration kernel K(s)
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sK(s) increases monotonically from 2:36 � 10�3 GeV2 at s = 4m2� to
m2�=3 ' 3:72� 10�3 at s =1.

K(s)=s � 1=s2

Thus the kernel gives a very large weight to the low-energy region.



Cauchy-Theorem
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for arbitrary for mermorphic f(s).



Approximate K(s) by a meromorphic function K1(s). As K(s)=s behaves
approximately like 1=s2, we choose,
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where s0 should be in the region where PQCD is valid. We choose s0 = 4
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with the result:

a�2 = 2:762 283�10�3; a0 = 4:136 099�10�4; a1 = �9:913 527�10�5 .
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Sum Rule

We add and subtract the approximation K1(s)
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Cauchy�s Theorem leads to the sum rule:

auds� =
�2EM
3�2

122�a�2�
0
uds(0)�

1

2�i

�2EM
3�2

I
jsj=s0

ds

s
K1(s)12��

QCD
EM (s)

+
�2EM
3�2

Z s0
4m2�

ds

s
[K(s)�K1(s)] R(s) +

�2EM
3�2

Z 1
s0

ds

s
K(s) R(s)

(4)

It turns out that the data-dependent contribution is only a small correction.
Experimental uncertainties are consequently considerably suppressed.

The sum rule Eq. (4) is exact

In the integral around the circle of radius s0 we use PQCD at �ve-loop level
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The precision of the approximation K1(s) is not relevant for the total value of
auds� because of the di¤erence K(s) � K1(s). A good approximation to the
kernel will, however, reduce the impact of data uncertainties entering a(3)� .

In principle it is possible to include higher inverse powers of s. Then higher
derivatives of �EM would contribute:
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If powers of s�n up to n = 3 are included, the data driven contribution is less
than one permille of the total.



Evaluation of the Light Quark Contribution

�PQCD is usually de�ned for the vector current of a single quark type, so that
for three light �avors and 3

P
Q2f = 2, one has �EM = (2=3)�PQCD. We

calculate the integral containing �PQCD using moments de�ned by
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The result for the low-energy PQCD contribution to the anomaly is
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Result

a
(1)
� = (9:56� 0:21)� 10�10 (small)

using contour-improved perturbation theory

a
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� = 9:44� 10�10

Compare with the experimental value

ahad� = (693:1� 3:4)� 10�10 [Davier et al.2017]



Uncertainty due to scale variations or the uncertainty from �s is negligible for
the total. Higher-dimensional operators, e.g. the gluon condensate, and due to
duality violations.
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Duality violations even smaller due to their expected exponential fall-o¤.

Quark mass e¤ects

a
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Main Contribution: the pole residue part a(2)�

a
(2)
� =

�2EM
3�2

12�2c�2�
0
EM(0) :

BMW also give the second derivative �00EM(0) = �0:181�0:013 which would
allow a much better �t to K(s).



Data integral contribution: a(3)�
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For R(s) we use our compilation of data

a
(3)
� = (55:5� 0:6)� 10�10 :

The data contribution to the anomaly is small, i.e. around 8% of the total
hadronic contribution. Data errors are reduced correspondingly.



Asymptotic Contribution

K(s) can be safely approximated by its asymptotic form K(s) ' m2�
3s , with a

precision of better than 2%
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The use of PQCD at squared energies above s0 = 4 GeV2 is well justi�ed.
The excellent agreement of R(s) with PQCD is supported by the recent KEDR

data in the range
p
s = 1:84� 3:05 GeV. Moreover, since a(4)� is only a small

contribution to the total a�, one can expect corrections due to condensates
and duality violations to be completely negligible.



Combined Results

a
(u;d;s)
� = (620:1� 34:6)� 10�10 Mainz

a
(u;d;s)
� = (664:9� 17:7)� 10�10 BMW

The slight disagreement between the two values shows that a careful assessment
of the error contributions to the LQCD results for �0EM(0) is necessary.

The error in the �nal result is completely dominated by the uncertainty in the
LQCD determination of the slope �0EM(0).

Within errors, the �nal result for a(u;d;s)� does not depend on the speci�c choice
of the approximate kernelK1(s) or on the divisor s0. The changes of individual

contributions to a(u;d;s)� compensate each other in the total and the �nal result
varies little within the given uncertainties.



Case 1: s0 = 4 GeV2 ,
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Case 2: Same as case 1, but for s0 = 9 GeV2 (instead of s0 = 4 GeV2)
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Case 4: Same as case 3, but using 0:2 GeV2 for the lower limit of the �t
(instead of 4m2� = 0:078 GeV

2)

� With future improved determination of �0(0) one can use
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Contribution of Heavy Quarks

Charm quark
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Sum rule
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Similarly:

ab� = (0:29� 0:01)


