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1 The muon anomaly
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We split the integral into a low- and into a high-energy part
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Integration kernel K (s)
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sK(s) increases monotonically from 2.36 x 1073 GeV? at s = 4m2 to

mi/3 ~ 3.72 x 1073 at s = 0.
K(s)/s~1/s°

Thus the kernel gives a very large weight to the low-energy region.



Cauchy-Theorem
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Finite Energy Sum Rule
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for arbitrary for mermorphic f(s).



Approximate K(s) by a meromorphic function Ki(s). As K(s)/s behaves

approximately like 1/82, we choose,
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where sg should be in the region where PQCD is valid. We choose sg = 4

GeV2. The constants a_o, ag, and aq are determined by the conditions
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with the result:

a_p=2.762283x1073 ag = 4.136099x 10~ %, a; = —9.913527 x 10> .
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The functions K (s)/s (black,dotted)
and K1(s)/s (red) for 4m2 < s < 1
GeV "2




Sum Rule

We add and subtract the approximation K1(s)
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with
Mew(s) = [dMg(s) + 5Ts(s)]

Cauchy's Theorem leads to the sum rule:
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It turns out that the data-dependent contribution is only a small correction.
Experimental uncertainties are consequently considerably suppressed.

The sum rule Eq. (4) is exact

In the integral around the circle of radius sg we use PQCD at five-loop level
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a;,’,a; " ,ay obtained from theory



The precision of the approximation K7(s) is not relevant for the total value of

alds because of the difference K(s) — K1(s). A good approximation to the

I
kernel will, however, reduce the impact of data uncertainties entering ag’).

In principle it is possible to include higher inverse powers of s. Then higher
derivatives of I1gp; would contribute:
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If powers of s™" up to n = 3 are included, the data driven contribution is less
than one permille of the total.



Evaluation of the Light Quark Contribution

nPQCD ig usually defined for the vector current of a single quark type, so that
for three light flavors and 32@% — 2, one has Mgy = (2/3)NMPQED . Wwe

calculate the integral containing nPQCD using moments defined by
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The result for the low-energy PQCD contribution to the anomaly is
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Result
o) = (9.56 £0.21) x 10710 (small)
using contour-improved perturbation theory
o\ = 9.44 x 10710

Compare with the experimental value

a"? = (693.1 £ 3.4) x 1071% [Davier et al.2017]



Uncertainty due to scale variations or the uncertainty from s is negligible for
the total. Higher-dimensional operators, e.g. the gluon condensate, and due to
duality violations.

e =z T Qg (1+5e) (7).
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Duality violations even smaller due to their expected exponential fall-off.

Quark mass effects

aH A€ — 0,05 x 10710 for mg = 0.1GeV
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Main Contribution: the pole residue part a;

2
o
a£2) = 31;7:\2/[ 127r26_QI_|’EM(O).

[Ty (0)  Collab. a [fm]
0.0883(30) Mainz/CLS [22] C.L.
0.0959(30) BMW [21] C.L.
0.0889(16) HPQCD [20] 0.15
0.0892(14) HPQCD [20] 0.12

BMW also give the second derivative Mg, ,(0) = —0.181 4 0.013 which would
allow a much better fit to K{(s).
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Data integral contribution: a

(3)_04EM A6V ds = [K(s) = Ka(s)] R(s).
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For R(s) we use our compilation of data

o) = (55.5 £ 0.6) x 10710,

The data contribution to the anomaly is small, i.e. around 8 % of the total
hadronic contribution. Data errors are reduced correspondingly.



Asymptotic Contribution

2
K (s) can be safely approximated by its asymptotic form K(s) ~ % with a

precision of better than 2%
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The use of PQCD at squared energies above sg = 4 GeV? is well justified.
The excellent agreement of R(s) with PQCD is supported by the recent KEDR
data in the range /s = 1.84 — 3.05 GeV. Moreover, since aff) is only a small
contribution to the total a;,, one can expect corrections due to condensates
and duality violations to be completely negligible.



Combined Results

o) = (620.1+34.6) x 10710 Mainz

o) = (664.9+£17.7) x 10710 BMW

The slight disagreement between the two values shows that a careful assessment
of the error contributions to the LQCD results for FI’EM(O) IS necessary.

The error in the final result is completely dominated by the uncertainty in the
LQCD determination of the slope Mg),(0).

(w

Within errors, the final result for a, i:5) does not depend on the specific choice
of the approximate kernel K1(s) or on the divisor sg. The changes of individual
(u,d,s)

contributions to a/, compensate each other in the total and the final result
varies little within the given uncertainties.



Case | a ol (1], [22) N a“ ™ (21), 2)
(0 051 | (5645177, 519.7£346) | 55506 | 3537 | (664.9£17.7, 620.1 £ 34.6)
1| 3648 | (555.7 174, 51154342) | 566£06 | 1564 | (6644174, 620.24342)
) | 4713 | (482.3 4151, 443.94206) | 195.04+2.0 | 3537 | (665.5+15.2, 62714207
3| —57.96 | (586.0£184, 530.3+36.0) | 96910 | 35.37 | (661.0£184, 6143L360)

Case 1: sg = 4 GeV?
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Case 2: Same as case 1, but for sg = 9 GeV? (instead of s = 4 GeV?)

Case 3: Ki(s) =

S 82

0

), sop =4 GeV/?2




Case 4: Same as case 3, but using 0.2 GeV? for the lower limit of the fit
(instead of 4m2 = 0.078 GeV?)

e With future improved determination of I1’(0) one can use

a® = (183.2 & 2.1 + 5027M/,4(0)GeV?) x 10~ 1°



Contribution of Heavy Quarks

Charm quark
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— 3.2 + —2] fitted for Mg/w < 5 < 5GeV?
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with ¢; = 0.003712 GeV? and ¢y = 0.0005133 GeV4. [(K(s)—K1(s))/K(s)| <
0.02%

|dea:

quark mass <= integral over R(s)
LQCD




Sum rule
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Similarly:
a’, = (0.29 £ 0.01)



