Notes on Low-Energy $\pi\pi$

HPQCD Collaboration

(Peter Lepage)

Extended scalar QED model

- Study effects of low-energy ππ states on a_µ^{HVP} within extended chiral perturbation theory /scalar QED that includes π's, ρ's, and γ's [Jegerlehner & Szafron, EPJC71 1632 (2011)]
 - (same theory used to compute finitevolume + staggered discretization corrections)
 - Include leading interactions that couple
 ρ and ππ channels with g_ρ=5.4, g_{ρππ}=6.0,
 f_ρ=0.21 GeV

Formulae

Compute ππ levels numerically from poles and residues of Π(q²) in Appendix B of Chakraborty et al., PRDD96 (2017) no.3, 034516

$$\begin{split} \hat{\Pi}(-q_{E}^{2},f_{\rho},m_{\rho},m_{\pi}) &= -\hat{\Sigma}(-q_{E}^{2},m_{\pi},m_{\pi}) \\ &+ \frac{f_{\rho}^{2}}{2m_{\rho}^{2}} \frac{q_{E}^{2} \left(1+g_{\rho}g_{\rho\pi\pi} \hat{\Sigma}(-q_{E}^{2},m_{\pi},m_{\pi})\right)^{2}}{q_{E}^{2} \left(1+g_{\rho\pi\pi}^{2} \hat{\Sigma}(-q_{E}^{2},m_{\pi},m_{\pi})\right) + m_{\rho}^{2}} \\ with \quad -\hat{\Sigma}(-q_{E}^{2},m_{a},m_{a}) &\equiv \\ &\frac{4q_{E}^{2}}{3} \int \frac{d^{3}\mathbf{k}}{(2\pi)^{3}2E_{a}E_{b}} \frac{\mathbf{k}^{2}}{(E_{a}+E_{b})^{3}(q_{E}^{2}+(E_{a}+E_{b})^{2})}. \end{split}$$

Include taste splittings between pions by and finite lattice volume by

$$\hat{\Sigma}(-q_E^2, m_\pi, m_\pi) \to \frac{1}{16} \sum_{\xi_a, \xi_b} \hat{\Sigma}_V(-q_E^2, m_\pi(\xi_a), m_\pi(\xi_b))$$
$$\int \frac{d^3 \mathbf{k}}{(2\pi)^3} \to \frac{1}{L^3} \sum_{k_x = -\infty}^{\infty} \sum_{k_y = -\infty}^{\infty} \sum_{k_z = -\infty}^{\infty} \sum_{k_z = -\infty}^{\infty}$$

HVP contribution to muon g-2 with (2+1+1) HISQ quarks

$\pi\pi$ - ρ Contributions to α_{μ} (Model)

- Without interactions: ρ dominates, ππ negligible (due to finite volume, staggered pions).
- With interactions: ρ mixes with ππ and its contribution spread over many states.
- Total a_{μ} same in both cases (<0.5%).
- Noisy data \Rightarrow fitter can't tell difference.

Model in B. Chakraborty *et al* 1601.03071 Phys. Rev. D96 (2017) 034516 (App. B)

Equivalent Fits ($\chi^2/dof \le 1$)

- Fit unable to resolve difference between one or multiple rho mesons; spreads contribution over multiple terms.
- Negligible difference for t<4fm, and irrelevant for a_{μ} .

	$E_0 \setminus a_0$	E₁∖a₁	E₂∖a₂	E₃ \ a₃	α _μ x 10 ¹⁰
Fit 1	0.770\0.132	1.72\0.35	2.5\0.1		602(7)
Fit 2	0.75 \ 0.09	0.80 \ 0.09	1.75 \ 0.36		602(7)
Fit 3	0.71\0.08	0.78 \ 0.04	<mark>0.84</mark> \ 0.10	1.76\0.36	608(8)

Equivalent Fits ($\chi^2/dof \le 1$)

- Fit unable to resolve difference between one or multiple rho mesons; spreads contribution over multiple terms.
- Negligible difference for t < 4fm, and irrelevant for a_{μ} .

	$E_0 \setminus a_0$	E₁∖a₁	E₂∖a₂	E₃ \ a₃	<i>α</i> _μ x 10 ¹⁰
Fit 1	0.770\0.133	1.91\0.42	3.3\0.1		604(8)
Fit 2	<mark>0.69</mark> \ 0.06	<mark>0.76</mark> \ 0.04	<mark>0.83</mark> \ 0.12	1.95\0.43	606(9)

Comparison with noisy data

- Compare with results on independent ensemble with same lattice spacing and slightly different quark masses, but substantially lower statistics
 - Answers consistent
 until t^{*}~2 fm, but
 diverge substantially
 beyond t^{*}~3 fm
 - ☆ Can obtain a_µ^{HVP}
 from data + fit for t*
 below ~2−2.5 fm

Long-distance contributions from GEVP

Plot shown by Blum at USQCD All-Hands' meeting in April shows contributions to a_µ^{HVP} from from individual lattice пп energy levels obtained from GEVP analysis [<u>https://</u>indico.fnal.gov/event/16470/session/1/contribution/13/material/slides/0.pdf]

HVP contribution to muon g-2 with (2+1+1) HISQ quarks

Long-distance contributions from GEVP

Plot shown by Blum at USQCD All-Hands' meeting in April shows contributions to a_µ^{HVP} from from individual lattice пп energy levels obtained from GEVP analysis [<u>https://</u>indico.fnal.gov/event/16470/session/1/contribution/13/material/slides/0.pdf]

Comparison with extended sQED

• Compute $\pi\pi$ levels and contributions to a_{μ}^{HVP} on a~0.15 fm physical-mass ensemble, which has similar spectrum to RBC/UKQCD example

Comparison with extended sQED

• Compute $\pi\pi$ levels and contributions to $a_{\mu}^{\mu\nu\rho}$ on a~0.15 fm physical-mass ensemble, which has similar spectrum to RBC/UKQCD example

