NEWS FROM CMD-3, SND EXPERIMENTS AT VEPP2000

Evgeny Solodov

on behalf of CMD-3 and SND collaborations

Budker Institute of Nuclear Physics Novosibirsk State University

June 2018

3

Energy measurement

Starting from 2012, energy is monitored continuously using Compton backscattering

M.N. Achasov et al. arXiv:1211.0103v1 [physics.acc-ph] 1 Nov 2012

Detector CMD-3

General purpose magnetic detector With excellent tracking and calorimeter

Detector SND

0 20 40 60 80 100 cm

1 - vacuum chamber, 2 - tracking DC,
3 - aerogel n=1.13, 1.05 4 - Nal(Tl) crystals,
5 - phototriodes, 6 - absorber, 7-9 - muon
detector, 10 - SC solenoids

High-resolution Nal calorimeter with excellent tracking and PID

Collected luminosity in 2011-2013

The luminosity was limited by a deficit of positrons and limited energy of the booster.

The VEPP-2000 upgrade has started in 2013.

ω(782)	8.3 1/pb	
$2E < 1 \text{ GeV} (\text{except } \omega)$	9.4 1/pb	
$\varphi(1019)$	8.4 1/pb	
2E > 1.04 GeV	34.5 1/pb	

About 60 pb-1 collected per detector

VEPP-2000 upgrade (2013-2016)

Collider upgrades:

- x10 more intense positron source
- booster up to 1 GeV (match VEPP-2000)

CMD-3 upgrades:

- New electronics for Lxe calorimeter
- New TOF system
- DAQ and electronics upgrades

Detectors resumed data taking by the end of 2016

2017-2018 data taking

9

At VEPP2000 - we do exclusive measurements of e⁺e⁻ -> hadrons and study production dynamics.

Luminosity determination

Overall runs systematic uncertainty is about 1%

13

CMD-3 published results from 2011-2013

Intermediate structures are studying in every final state

Correction to K^+K^- at ϕ

- We observe large discrepancy between CMD-2 and CMD-3 data.
- CMD-2 has trigger DC+Zchamber+CsI calorimeter energy deposition – no cross check! Kaons stop in first wall and only decays and interactions provide trigger.
- CMD-3 has only DC hits in trigger, but all information from Z-chamber(the same!) and calorimeter.
- We can directly measure trigger efficiency of CMD-2.
- Corrected data should be published soon

Cross check for Bhabha events ε_{trig} = 0.9949±0.0001

14

Dominant channel e⁺e⁻ -> $\pi^+\pi^-$

Source	Goal	Current estimation	<u>N</u>
Radiative Correction	0.2%	0.2% (cross-section) 0.0-0.4% (mom.sep.)	<u>щ</u>
Event separation	0.2%	0.1-0.5% (mom. sep.) ~1.5% (energy sep.)	
Fiducial volume	0.1%	ok	
Beam energy	0.1%	ok	
Pion corrections (decay, nucl.int.)	0.1%	0.1% -nucl. int. <mark>0.6-0.3%</mark> decays at low energies	
Combined	0.33%	0.4-0.9% (mom.sep.) 1.5% (energy sep.)	

Some corrections are not applied (result is still "blinded") Hope to finalize it later this year

CMD-3 preliminary: $\pi^+\pi^-(\omega,\eta), K^+K^-(\omega,\eta)$

1

18

NEW! $e^+e^- -> 3(\pi^+\pi^-)\pi^0$

SND@VEPP-2000 summary of results, (journal articles)

Published:		Published, cont'd	:
1.e+e- $\rightarrow \pi^0 \pi^0 \gamma$,	Ph.Rev.D, (2013,2016)	8. e+e- → η,	JETP Lett.,(2015)
2. e+e- → nn,	Phys.Rev.D,(2014)	9. e+e- → K⁺K⁻,	Phys.Rev.D,(2016)
3. e+e- → NN-6л	r, JETP Lett.,(2014)	10 . e+e- → ωηπ ⁰ ,	Phys.Rev.D,(2016)
4. e+e- → ηγ,	Phys.Rev.D,(2014)	11. e+e- → ωη,	Phys.Rev.D,(2016)
5. e+e- → η′,	Phys.Rev.D,(2015)	12. e+e- → π ⁰ γ,	Phys.Rev.D,(2016)
6. e+e- → ηπ ⁺ π ⁻ ,	Phys.Rev.D,(2015)	13. e+e- →NN-nπ,	Phys.At.Nucl, (2017)
7. e+e- $\rightarrow \pi^+\pi^-\pi^0$, JETP,(2015)		
	, , ()		

In print:

1. e+e- $\rightarrow K_{S}K_{L}\pi^{0}$,	Phys.Rev.D,
2. e+e- → ηπ ⁺ π ⁻ ,	Phys.Rev.D,
3. e+e- → ηK⁺K⁻,	JETP,

In analysis:
1.
$$e+e- \rightarrow \pi^{+}\pi^{-}$$
,
2. $e+e- \rightarrow \eta\pi^{0}\pi^{+}\pi^{-}$,
3. $e+e- \rightarrow \pi^{+}\pi^{-}\pi^{0}\pi^{0}$,
4. $e+e- \rightarrow K^{+}K^{-}\pi^{0}$,
5. $e+e- \rightarrow \omega\pi^{0}\pi^{0}$,
6. $e+e- \rightarrow 6\pi$

E. Solodov. CMD-3, SND Overview

$e^+e^- \rightarrow \omega \pi^0 \eta$, Phys. Rev. D 94,032010 (2016)

June 2018

21

- First measurement of the $e^+e^- \rightarrow \omega \pi^0 \eta$ cross section.
- The dominant mechanism is $\omega a_0(980)$.
- The cross section is about 2.5 nb, 5% of the total hadronic cross section

Intermediate structures are studying in every final state

22

$e^+e^- \rightarrow \pi^+\pi^-$ SND (preliminary)

2017: e⁺e⁻ -> pp at NN threshold

In 2017 CMD-3 and SND has performed the scan at the NNbar threshold with a step smaller than c.m. machine energy spread (1.2 MeV). The e+e- -> ppbar cross section demonstrate exponentially fast rising in about 1 MeV interval.

Figure 2: The $e^+e^- \rightarrow p\bar{p}$ visible cross section measured with the CMD-3 detector. Solid curve shows a fit with Gaussian-rised Born cross section (dashed curve) convoluted with 1.2 MeV energy spread and radiation function. The vertical lines show the $p\bar{p}$ and $n\bar{n}$ thresholds.

2017: $e^+e^- \rightarrow 3(\pi^+\pi^-)$ at $N\bar{N}$ threshold

CMD-3 has confirmed fast drop of the cross section, and new scan shows the scale of the drop consistent with ppbar cross section rise ~1 MeV.

Figure 1: The $e^+e^- \rightarrow 3(\pi^+\pi^-)$ cross section measured with the CMD-3 detector at VEPP-2000 in 2017 run (squares). The results of previous CMD-3 measurements [6] are shown by dots, when BaBar measurement [4] are shown by open circles. The lines show the $p\bar{p}$ and $n\bar{n}$ thresholds.

Figure 3: The $e^+e^- \rightarrow 3(\pi^+\pi^-)$ visible cross section measured with the CMD-3 detector. Solid curve shows fit with Born cross section (dashed curve) convoluted with 1.2 MeV energy spread and radiation function. The vertical lines show the $p\bar{p}$ and $n\bar{n}$ thresholds.

No indication of NNbar threshold in the e⁺e⁻ -> $2(\pi + \pi -)$ reaction!

Figure 4: The $e^+e^- \rightarrow 2(\pi^+\pi^-)$ cross section measured with the CMD-3 detector. Lines show the $p\bar{p}$ and $n\bar{n}$ thresholds.

We continue search for the NNbar threshold indication in other multi-hadron reactions

One more channel, where NN threshold structure has been observed!

26

Milstein-Salnikov prediction (fit?)

Theoretical calculation well describes the experimental data for ppbar production in e+e-

Using predicted shape convoluted with radiative effects and beam energy spread we fit visible XS: Good agreement in shape – theoretical prediction should be increased by 10% to fit our 2017 data Note NON-ZERO XS at the threshold.

28

Milstein-Salnikov prediction (fit?)

Theoretical calculation not so well describes the experimental data for nnbar production in e+e-, but not in contradiction.

We are eagerly wait for the result of nnbar analysis from SND and CMD-3 at the threshold

Should be later this year.

e+e- -> nn SND (preliminary)

Milstein-Salnikov prediction

Large contribution to total hadronic cross section!!: 7 nb to ~40 nb total

30

Present accuracy in R is too poor

Green line and band – sum of exclusive channels

Points – inclusive measurements

Blue line(s) – Milstein-Salnikov prediction – about 15% of total XS is due to NN interaction !?

Conclusion

 The goal of two experiments CMD-3 and SND at VEPP2000 is to provide exclusive measurement of e+e- -> hadrons reactions in the energy range 0.32 – 2.0 GeV

• In 2011-2013 both detectors have collected about 60 pb⁻¹ each in the whole 0.32 – 2.0 GeV energy range, available at VEPP2000

• During 2014-2016 machine and detectors have been upgraded and at the end of 2016 detectors resumed data taking

 In 2017 both detectors have collected 50 pb⁻¹ in 5 months with c.m. energy scan from 1.68 to 2.0 GeV. At the end of 2017, beggining of 2018 - 66 pb⁻¹ have been collected in 0.55-1.0 GeV

• Many analyses have been published. Many more are in the line.

CMD-3 Performance (2011-2013)

- 1.0-1.3 T magnetic field
- Tracking: $\sigma_{R\varphi} \sim 100 \,\mu$, $\sigma_{Z} \sim 2 3 \,\text{mm}$
- Combined EM calorimeter (LXE, Csl, BGO), 13.5 X₀

$$rac{}{} \sigma_{E}/E \sim 3\% - 10\%$$

 $\succ \sigma_{\Theta} \sim 5 \text{ mrad}$

34_

Search for e+e- $\rightarrow \eta'(958)$

3<u>5</u>_