
HVP lattice finite-volume 
corrections

OUTLINE

▪Motivations

▪Current status from Collaborations

Second Plenary Workshop of 
the Muon g-2 Theory Initiative 

Helmholtz Institut Mainz

18th - 22nd June 2018

Davide 
Giusti



Motivations



HVP of the muon

3

		

δa
µ
HVP ud;	conn.,	qQED( ) =6.9 1.9( ) ⋅10−10 				 ETMC	18( )

δa
µ
HVP ud( ) =7.8 5.1( ) ⋅10−10 				 BMW	17( )

δa
µ
HVP ud( ) =9.5 10.2( ) ⋅10−10 				 RBC/UKQCD	18( )

δa
µ
HVP ud;	sIB( ) =9.0 4.5( ) ⋅10−10 				 FNAL/HPQCD/MILC	18( )

		estimate	from	π
0γ ,ηγ , ρ−ω 	mixing,M

π ±

1 disconnected QED diagram

strong IB only

quark connected only and qQED

		

				ETMC	18		
a
µ
HVP =685.6 13.8( ) ⋅10−10

				 ud( ) =622.8 12.8( ) ⋅10−10 				
s( ) =53.1 2.5( ) ⋅10−10
c( ) =14.75 0.56( ) ⋅10−10
IB( ) =6.9 1.9( ) ⋅10−10

disc( ) =−12 4( ) ⋅10−10 e+e- data
100%

lattice data
100%

average of BMW 17 and RBC/UKQCD 18 estimates 550 600 650 700 750

a
µ

HVP * 1010

ETMC 18
RBC/UKQCD 18
BMW 17
CLS/Mainz 17
HPQCD 16

KNT18
no New Physics

DHMZ 17
FJ 17

RBC/UKQCD 18lattice + e+e-

~ 30% + 70%

Friday, June 15, 18

The hadronic vacuum polarization contribution to aµ from full lattice QCD

Bipasha Chakraborty,1 C. T. H. Davies,1, ⇤ P. G. de Oliveira,1 J. Koponen,1 and G. P. Lepage2

(HPQCD collaboration), †

R. S. Van de Water3

1
SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK

2
Laboratory for Elementary-Particle Physics, Cornell University, Ithaca, New York 14853, USA

3
Fermi National Accelerator Laboratory, Batavia, IL, USA

(Dated: May 30, 2017)

We determine the contribution to the anomalous magnetic moment of the muon from the ↵2
QED

hadronic vacuum polarization diagram using full lattice QCD and including u/d quarks with physical
masses for the first time. We use gluon field configurations that include u, d, s and c quarks in the
sea at multiple values of the lattice spacing, multiple u/d masses and multiple volumes that allow us
to include an analysis of finite-volume e↵ects. We obtain a result for aHVP,LO

µ of 667(6)(12)⇥ 10�10,
where the first error is from the lattice calculation and the second includes systematic errors from
missing QED and isospin-breaking e↵ects and from quark-line disconnected diagrams. Our result
implies a discrepancy between the experimental determination of aµ and the Standard Model of 3�.

I. INTRODUCTION

The muon’s gyromagnetic ratio gµ is known ex-
perimentally with extremely high accuracy: its mag-
netic anomaly, aµ ⌘ (gµ � 2)/2, has been measured
to 0.5 ppm [1] and a new experiment aims to reduce that
uncertainty to 0.14 ppm [2]. By comparing these results
with Standard Model predictions, we can use the muon’s
anomaly to search for indirect evidence of new physics
beyond the mass range directly accessible at the Large
Hadron Collider. There are tantalizing hints of a discrep-
ancy between theory and experiment — the di↵erence is
currently 2.2(7) ppm [3] — but more precision is needed.
In particular the Standard Model prediction, which cur-
rently is known to about 0.4 ppm [3], must be substan-
tially improved in order to match the expected improve-
ment from experiment.

The largest theoretical uncertainty in aµ comes from
the vacuum polarization of hadronic matter (quarks and
gluons) as illustrated in Figure 1. This contribution
has been estimated to a little better than 1% (which
is 0.6 ppm of aµ) from experimental data on e

+
e

� !
hadrons and ⌧ decay [4–8], but much recent work [9–
18] has focused on a completely di↵erent approach, us-
ing Monte Carlo simulations of lattice QCD [19], which
promises to deliver smaller errors in the future.

In an earlier paper [14], we introduced a new technique
for the lattice QCD analyses that allowed us to calculate
the s quark’s vacuum-polarization contribution from Fig-
ure 1 with a precision of 1% for the first time. Here we
extend that analysis to the much more important (and
di�cult to analyze) case of u and d quarks, allowing us to
obtain the complete contribution from hadronic vacuum

⇤
christine.davies@glasgow.ac.uk

†
URL: http://www.physics.gla.ac.uk/HPQCD
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q

q

FIG. 1: The ↵2
QED hadronic vacuum polarization contribu-

tion to the muon anomalous magnetic moment is represented
as a shaded blob inserted into the photon propagator (rep-
resented by a wavy line) that corrects the point-like photon-
muon coupling at the top of the diagram.

polarization at ↵

2
QED. We achieve a precision of 2%, for

the first time from lattice QCD. A large part of our un-
certainty is from QED, isospin breaking and quark-line
disconnected e↵ects that were not included in the simu-
lations, but will be in future simulations. The remaining
systematic errors add up to only 1%. A detailed analysis
of these systematic errors allows us to map out a strat-
egy for reducing lattice QCD errors well below 1% using
computing resources that are substantial but currently
available.

II. LATTICE QCD CALCULATION

Almost all of the hadronic vacuum polarization contri-
bution (HVP) comes from connected diagrams with the
structure shown in Figure 1: the photon creates a quark
and antiquark which propagate, while interacting with
each other, and eventually annihilate back into a pho-
ton. Here we analyze the case where the photon creates
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𝝌PT Groups
Aubin et al. 2016

aµ
LO,HVP Qmax

2⎡⎣ ⎤⎦ = 4α em
2 dQ2  f Q2( )

0

Qmax
2

∫  Π Q2( )−Π 0( )⎡⎣ ⎤⎦

Πµν Q( ) = Q2δ µν −QµQν( )Π Q2( )

Hadronic	vacuum	polariza5on	to	muon	anomalous	magne5c	
moment:	

expression:																																																																																																						(Blum,	‘03)		

	
with															a	known	weight	func5on,	and															the	HVP	obtained	from	
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𝝌PT Groups
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FIG. 4: Comparison of ⇧
A1(q̂

2) � ⇧
A1(q̂

2) between MILC asqtad lattice data (blue points) and

lowest-order SChPT (red points).

the continuum limit. However, the slopes are also vastly di↵erent, and this is a physical
e↵ect, already observed in Ref. [12]. The slope of the vacuum polarization at low q2 is
dominated by the ⇢ resonance, but this resonance (and others) are absent in Eq. (2.12).16

Despite these di↵erences, there are useful lessons to be learned from Fig. 3. The sub-
tracted value ⇧

A1(q̂
2) is an order of magnitude closer to the infinite-volume points than the

unsubtracted value, ⇧
A1(q̂

2). Clearly, the lesson is that one should carry out the subtrac-
tion (2.6) (at least for the A1 representation). This was already observed empirically in
Ref. [22], and we see here that this observation is theoretically supported by ChPT. Fur-
thermore, we see that ⇧

A1(q̂
2) and ⇧

A

44
1
(q̂2) straddle the infinite-volume result, suggesting

that also in lattice QCD the true value of ⇧(q2) lies in between these two.17

Of course, one would like to test whether these lessons from lowest-order SChPT also
apply to the actual lattice data. While no lattice data are available in infinite volume,
it is possible to compare finite-volume di↵erences predicted by SChPT to such di↵erences
computed from the lattice data. In Fig. 4 we show the di↵erence ⇧

A1(q̂
2) � ⇧

A1(q̂
2) in the

low-q̂2 region, both on the lattice and computed in lowest-order SChPT. This di↵erence is a
pure finite-volume e↵ect. Clearly, SChPT does a very good job of describing the lattice data,
with all red points within less than 1� of the blue points. This is remarkable, especially in
view of the fact that lowest-order SChPT does such a poor job of describing the full lattice
data for ⇧

A1(q̂
2), as we noted above.

16 This observation of Ref. [12] has led to the ubiquitous use of vector-meson dominance to parametrize the

vacuum polarization, before model-independent methods started to be explored [4, 19–21].
17 ⇧r(q̂2) for r 2 {T1, T2, E} also lies below the infinite-volume result close to ⇧A44

1
(q̂2), according to ChPT.
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FIG. 5: Comparison of ⇧
A1(q̂

2) � ⇧
A

44
1
(q̂2) between MILC asqtad lattice data (blue points) and

lowest-order SChPT (red points).

We may also consider di↵erences between di↵erent representations, which also probes the
size of finite-volume e↵ects. In Fig. 5 we show the di↵erence ⇧

A1(q̂
2) � ⇧

A

44
1
(q̂2), for the

lattice data, and computed in SChPT. To extract ⇧
A

44
1
(q̂2) from ⇧

µ⌫

(q̂) we need at least one
spatial component of the momentum to not vanish, implying that q̂2 � 4⇡2/L2 = 0.108 GeV2

for these points. All observations made above about the di↵erence ⇧
A1(q̂

2)�⇧
A1(q̂

2) apply
here as well, with the di↵erence between lattice data and ChPT now averaging about 1�.
We note the di↵erence of scale on the vertical axis between Figs. 4 and 5, consistent with
the fact that both ⇧

A1(q̂
2) and ⇧

A

44
1
(q̂2) are much closer to the infinite-volume limit than

⇧
A1(q̂

2). We find that the pattern is very similar for other representations.

B. E↵ects on aHVP
µ

Finally, while it is already clear that there are significant finite-volume e↵ects in the
vacuum polarization, we consider the question of how they propagate to the anomalous
magnetic moment itself. We will, in fact, compare the quantity aLO,HVP

µ

[q̂2
max

] with the
choice q̂2

max

= 0.1 GeV2, in order to be certain that di↵erences are due to finite volume, and
not to lattice spacing e↵ects.18

We fit the data for ⇧
A1 and ⇧

A

44
1

with a [0, 1] Padé [19], or a quadratic conformally
mapped polynomial [20] (both are three-parameter fits), on a low-q2 interval, looking for the
number of data points in the fit that gives the highest p-value. We then compare the results.

18 More than 80% of aLO,HVP
µ comes from the momentum region below 0.1 GeV2 [20].

11

A1 : Πiii∑  ;  A1
44 :Π44

10-15% FVEs

mπL = 4.2
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RBC/UKQCD Collaboration

mπL = 3.8 ÷ 3.9

L = 5.4 ÷ 5.5 fm

Physical mass point

FVEs corrected with
NLO 𝝌PT

Two ensembles T = 10.7 ÷11 fm
a = 0.084 ÷ 0.114 fm

Systematic uncertainty from 
the largest ratio of p6 to p4

Blum et al. 2018

ΔFVEsaµ conn
ud( ) = 15.9 3.7( ) ⋅10−10

ΔFVEsaµ conn
ud( ) = 20 3( ) ⋅10−10 Talk by C. Lehner
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aµ
LO-HVP . 1010

LQCD (Nf≥2+1)
Pheno.

Pheno+LQCD

BMW Collaboration

L = 6.1÷ 6.6 fm
T = 8.6 ÷11.3 fm

Physical mass point

FVEs corrected with
NLO SU(2) S𝝌PT
(I=1 channel only)

ΔFVEsaµ
I=1 ud( ) = 15.0 15.0( ) ⋅10−10

extrapolated to the continuum limit
(six lattice spacings ranging from 0.064 to 0.134 fm)

Borsanyi et al. 2017
7

� a [fm] (T⇥L/a2) a2�taste #conf-ud/#conf-s/#conf-c/#conf-disc #src-ud/#src-s/#src-c/#src-disc
3.7000 0.134 64⇥ 48 0.01809(4) 1000/1000/40/1000 768/64/4/9000
3.7500 0.118 96⇥ 56 0.00992(3) 1500/1500/40/1500 768/64/4/6000
3.7753 0.111 84⇥ 56 0.007378(16)⇤ 1500/1500/40/1500 768/64/4/6144
3.8400 0.095 96⇥ 64 0.00337(2) 2500/2500/40/1500 768/64/4/3600
3.9200 0.078 128⇥ 80 0.001090(14) 3500/3500/40/1000 768/64/4/6144
4.0126 0.064 144⇥ 96 0.000327(15) 450/450/40/- 768/64/4/-

⇤ Obtained by interpolation.

TABLE S1. Parameters of the 15 simulations performed. For a given bare coupling, �, the simulations di↵er only by a slightly
distinct choice of quark masses around their physical value. Here we list the �, the lattice spacings, a, the sizes T ⇥ L, the
taste splittings, a2�taste = (aMi5)

2 � (aM⇡)
2 (with M5i the mass of the ⇠5i taste partner and M⇡, the mass of the Golstone),

the number of configurations used and the number of sources per configuration used for each flavor contribution. Note that
for the ud and s contributions, all 15 simulations are used while for the charmed one, 2 simulations for � = 3.9200 are omitted
and, in addition, the one at � = 4.0126 for the quark-disconnected one.

The reason for averaging over tc is to dampen the ef-
fect of possible statistical fluctuations in the value of the
correlator from from one tc to the next. This is particu-
larly useful with staggered fermions, for which even and
odd times are mostly uncorrelated. Thus, for each lattice
spacing, we round the number of time slices in these tc
intervals to the nearest even integer. For � � 3.9200,
this leads to four time slices in each tc interval and to a
shift of two time slices between intervals. For � < 3.9200,
these figures are two and one. While this average is not
strictly necessary, because the bound means between two
neighboring tc’s in the relevant interval agree statistically,
it does reduce overall the fluctuations in central values,
leading to better �2/dof, e.g. in the continuum extrapo-
lations.

The disconnected contribution alone can be con-
strained for large enough time separations, where the
isospin singlet channel, dominated by three-pion states,
can be neglected compared to the triplet one, dominated
by two-pion states. Here we have, for large enough tc,

0  �Cdisc
ii (t)  1

10
Cud

ii (tc)
'(t)

'(tc)
+Cs

ii(t)+Cc
ii(t) , (S2)

up to higher-order, wrap-around contributions. At large
t, the connected strange and charm contributions in
Eq. (S2) are exponentially suppressed, and their presence
does not make a di↵erence when determining tc, so we
neglect them. As done in Fig. S2 for aLO-HVP

`,ud (Q2GeV),
in Fig. S3 we plot the resulting upper and lower bounds
on aLO-HVP

`,disc (Q2GeV) as a function of tc. Here, the tc
time ranges are taken to be tc = (2.600 ± 0.134) fm and
tc = (2.466± 0.134) fm, as suggested by the region of the
merging of the bounds in the figure.

Pion-pion interactions change the smallest two-pion
momentum from 2⇡/L in that channel. Using the model
of [58] and neglecting four-pion contributions, we deter-
mine the change in the two-pion energy to be around
2%. We checked that such a reduction of the momentum
changes the result on aLO-HVP

`,ud and aLO-HVP
`,disc by a small

fraction of the statistical error.

3. Physical point and lattice spacing uncertainty

We define the physical mass point by using the isospin
corrected pion and kaon masses, M̄⇡ = 134.8(3)MeV and
M̄K = 494.2(3)MeV, from [59], as well as the electro-
magnetically corrected ⌘c mass, M⌘c = 2.9863(27)GeV
of [60]. To convert the lattice results into physical units,
we use the pion decay constant obtained from pion lep-
tonic decays, which is free of electromagnetic corrections
and, to very good accuracy, equals the decay constant in
the md = mu limit [61]. This yields a well defined phys-
ical point in the isospin limit. In intermediate steps of
the analysis, we use the Wilson-flow-based [62] w0-scale
[63].
As noted in [41, 64], and generalized here for individual

flavor contributions,

lim
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`,f
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⇣↵
⇡

⌘2 d⇧f (Q2)

dQ2

���
Q2=0

. (S3)

Thus, for very light leptons, the leading dependence of
aLO-HVP
`,f on lattice spacing is quadratic. In practice,

we find this to be almost exactly true for the electron.
For the µ, this dependence ranges from quadratic to
about 20% weaker than quadratic, depending on the fla-
vor contribution. Only for the ⌧ can it be significantly
less for some contributions, as low as a0.8. Because it
maximizes the error bar due to the lattice spacing un-
certainty, we will assume a quadratic dependence on a
for all leptons and for all flavor contributions. This
means that, for a given simulation, the relative error on
aLO-HVP
`,f,lat (QQmax), due to the scale uncertainty, will be

taken to be twice that on the lattice spacing. While this
error may be modified some by the combined mass inter-
polations and continuum extrapolations, it represents the
dominant e↵ect on our results for aLO-HVP

`,f (QQmax).
This strong dependence on a means that uncertainties

on the lattice spacing must be estimated with care. As
noted above, we fix a with f⇡, through a/w0 and w0f⇡.
a/w0 is obtained to sub-permil precision for each of our
simulations. On a subset of these simulations, we de-
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mπL ! 4.1fixed
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Combined FV and discretisation effects (pion tastes)

mπL = 3.2 ÷ 5.4

mπ = 134 ÷ 311 MeV

3 lattice volumes @:
mπ ! 220 MeV
a = 0.12 fm

L = 2.4 ÷ 5.8 fm
T = 7.2 ÷ 8.6 fm

γ − ρ 0 −π +π − mixing to all orders
in leading interactionsNLO S𝝌PT +
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TABLE IV: Pion masses for di↵erent tastes, and the corresponding finite-volume plus staggered-pion corrections to be added
to the Taylor coe�cients ⇧j for each configuration (as given in Table II). The pion masses are based upon results in [55], using
our definition of the lattice spacing. The Taylor coe�cients include an extra 10% uncertainty, beyond that due to uncertainties
in the pion masses, to account for uncalculated and partially calculated higher-order terms in chiral perturbation theory.

Set m⇡(⇠5) m⇡(⇠5µ) m⇡(⇠µ⌫) m⇡(⇠µ) m⇡(1) �⇧1 �⇧2 �⇧3 �⇧4

1 0.302(2) 0.362(3) 0.407(4) 0.451(5) 0.485(19) 0.0012(1) �0.0050 (5) 0.014 (1) �0.034 (4)
2 0.216(1) 0.294(3) 0.348(4) 0.399(6) 0.438(23) 0.0028(3) �0.0160(16) 0.063 (7) �0.220 (24)
3 0.133(1) 0.240(3) 0.304(5) 0.362(7) 0.405(26) 0.0094(9) �0.0836(86) 0.588(62) �4.320(472)
4 0.301(2) 0.334(2) 0.360(3) 0.390(4) 0.413 (9) 0.0008(1) �0.0038 (4) 0.012 (1) �0.029 (3)
5 0.218(1) 0.262(2) 0.295(3) 0.331(4) 0.359(11) 0.0025(2) �0.0141(15) 0.056 (6) �0.196 (22)
6 0.217(1) 0.261(2) 0.294(3) 0.331(4) 0.358(11) 0.0022(2) �0.0131(13) 0.054 (6) �0.196 (22)
7 0.216(1) 0.261(2) 0.294(3) 0.330(4) 0.358(11) 0.0021(2) �0.0125(13) 0.052 (6) �0.191 (21)
8 0.133(1) 0.197(2) 0.240(4) 0.284(5) 0.316(13) 0.0081(8) �0.0771(79) 0.571(60) �4.340(474)
9 0.308(2) 0.319(2) 0.328(2) 0.337(2) 0.345 (4) 0.0005(1) �0.0026 (3) 0.008 (1) �0.021 (2)
10 0.219(1) 0.235(1) 0.247(2) 0.259(3) 0.270 (5) 0.0013(1) �0.0084 (9) 0.038 (4) �0.148 (16)

a) b) 2 ⇥

c)

FIG. 8: Leading diagrams from the ⇢ e↵ective field theory
that correspond (to leading order in q2/m2

⇢) to the diagrams in
Fig. 7 from the standard chiral theory: a) leading-order ⇡+⇡�

vacuum polarization; b) correction for the pion’s charge radius
from � ! ⇢ ! ⇡⇡; c) correction for ⇡⇡ scattering correction
from ⇡⇡ ! ⇢ ! ⇡⇡. Dashed and solid lines represent pions
and rhos, respectively.

term, and has the opposite sign. This is for our simula-
tion results with physical pion masses and the interme-
diate lattice spacing (set 8). The largest contributions
come mainly from the terms
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in Eq. (B33) (Figs. 8a and 8b), where r⇡ is the charge
radius of the pion. They contribute corrections to aµ

of 50 ⇥ 10�10 and �13 ⇥ 10�10, respectively. Further
(q2
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n corrections to the �-⇡⇡ vertex contribute 3 ⇥
10�10. The other q
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⇢ correction in Eq. (B33) is from
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This should be small because it is second order in
g⇢g⇢⇡⇡⌃̂; in fact, it contributes less than 0.5 ⇥ 10�10.
The total correction from all contributions (to all orders)
is 41 ⇥ 10�10 for set 8 —chiral perturbation theory con-
verges relatively rapidly here.

We add an extra 10% uncertainty to each correc-
tion �⇧j to account for missing contributions suppressed
by ms/⇤, due to tadpole and other renormalizations of
the leading vacuum polarization. This uncertainty also
accounts for corrections of order (q2

/⇤)2 and higher that
are only partially included by our analysis.

The taste structure of the ⇡⇡ vacuum polarization mat-
ters because its contribution to aµ is quite sensitive to the
pion mass (see Eq. (B25)) and pions of di↵erent taste
di↵er in mass. Taste-changing interactions normally lead
to small corrections that extrapolate smoothly to zero,
like ↵s(⇡/a) a

2, as the lattice spacing vanishes. This does
not work for the ⇡⇡ vacuum polarization with physical
pions, however, because its moments are non-analytic in
m⇡ (Eq. (B25)) and the taste-changing e↵ects are com-
parable to the (physical) pion mass. This is why we use
chiral perturbation theory to remove the e↵ects of the
staggered pion masses in the ⇡⇡ vacuum polarization.
There are other e↵ects from taste-changing but we only
need correct contributions that are non-analytic in m⇡

(and large enough to matter); all other e↵ects will ex-
trapolate away as we take the lattice spacing to zero.
The a-independence of our final results is evidence that
we have handled these corrections properly.

As noted in the main text, the largest corrections (7%)
are for our lightest pion masses. Corrections for our heav-
iest pions are about an order of magnitude smaller, and
therefore negligible compared to other errors. The correc-
tions are also negligible for s-quark vacuum polarization,
as discussed in our previous paper [14].

We tested our finite-volume analysis by analyzing sim-
ulations with three di↵erent volumes for our intermediate
lattice spacing and a pion mass of about 220 MeV (config-
uration sets 5–7). The raw data show variations between
the three volumes of 3.1(1.3)%. Our corrections, from
finite-volume/staggered-pion-masses and ⇢-mass rescal-
ing, reduce this variation by an order of magnitude; see
Figure 3. This is a non-trivial test of our corrections.

We also tested our finite-volume/staggered-pion cor-
rections by comparing results for individual Taylor co-
e�cients with experiment. Fig 9 shows the corrected
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term, and has the opposite sign. This is for our simula-
tion results with physical pion masses and the interme-
diate lattice spacing (set 8). The largest contributions
come mainly from the terms
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in Eq. (B33) (Figs. 8a and 8b), where r⇡ is the charge
radius of the pion. They contribute corrections to aµ
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This should be small because it is second order in
g⇢g⇢⇡⇡⌃̂; in fact, it contributes less than 0.5 ⇥ 10�10.
The total correction from all contributions (to all orders)
is 41 ⇥ 10�10 for set 8 —chiral perturbation theory con-
verges relatively rapidly here.

We add an extra 10% uncertainty to each correc-
tion �⇧j to account for missing contributions suppressed
by ms/⇤, due to tadpole and other renormalizations of
the leading vacuum polarization. This uncertainty also
accounts for corrections of order (q2

/⇤)2 and higher that
are only partially included by our analysis.

The taste structure of the ⇡⇡ vacuum polarization mat-
ters because its contribution to aµ is quite sensitive to the
pion mass (see Eq. (B25)) and pions of di↵erent taste
di↵er in mass. Taste-changing interactions normally lead
to small corrections that extrapolate smoothly to zero,
like ↵s(⇡/a) a

2, as the lattice spacing vanishes. This does
not work for the ⇡⇡ vacuum polarization with physical
pions, however, because its moments are non-analytic in
m⇡ (Eq. (B25)) and the taste-changing e↵ects are com-
parable to the (physical) pion mass. This is why we use
chiral perturbation theory to remove the e↵ects of the
staggered pion masses in the ⇡⇡ vacuum polarization.
There are other e↵ects from taste-changing but we only
need correct contributions that are non-analytic in m⇡

(and large enough to matter); all other e↵ects will ex-
trapolate away as we take the lattice spacing to zero.
The a-independence of our final results is evidence that
we have handled these corrections properly.

As noted in the main text, the largest corrections (7%)
are for our lightest pion masses. Corrections for our heav-
iest pions are about an order of magnitude smaller, and
therefore negligible compared to other errors. The correc-
tions are also negligible for s-quark vacuum polarization,
as discussed in our previous paper [14].

We tested our finite-volume analysis by analyzing sim-
ulations with three di↵erent volumes for our intermediate
lattice spacing and a pion mass of about 220 MeV (config-
uration sets 5–7). The raw data show variations between
the three volumes of 3.1(1.3)%. Our corrections, from
finite-volume/staggered-pion-masses and ⇢-mass rescal-
ing, reduce this variation by an order of magnitude; see
Figure 3. This is a non-trivial test of our corrections.
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rections by comparing results for individual Taylor co-
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term, and has the opposite sign. This is for our simula-
tion results with physical pion masses and the interme-
diate lattice spacing (set 8). The largest contributions
come mainly from the terms
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in Eq. (B33) (Figs. 8a and 8b), where r⇡ is the charge
radius of the pion. They contribute corrections to aµ
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This should be small because it is second order in
g⇢g⇢⇡⇡⌃̂; in fact, it contributes less than 0.5 ⇥ 10�10.
The total correction from all contributions (to all orders)
is 41 ⇥ 10�10 for set 8 —chiral perturbation theory con-
verges relatively rapidly here.

We add an extra 10% uncertainty to each correc-
tion �⇧j to account for missing contributions suppressed
by ms/⇤, due to tadpole and other renormalizations of
the leading vacuum polarization. This uncertainty also
accounts for corrections of order (q2

/⇤)2 and higher that
are only partially included by our analysis.

The taste structure of the ⇡⇡ vacuum polarization mat-
ters because its contribution to aµ is quite sensitive to the
pion mass (see Eq. (B25)) and pions of di↵erent taste
di↵er in mass. Taste-changing interactions normally lead
to small corrections that extrapolate smoothly to zero,
like ↵s(⇡/a) a

2, as the lattice spacing vanishes. This does
not work for the ⇡⇡ vacuum polarization with physical
pions, however, because its moments are non-analytic in
m⇡ (Eq. (B25)) and the taste-changing e↵ects are com-
parable to the (physical) pion mass. This is why we use
chiral perturbation theory to remove the e↵ects of the
staggered pion masses in the ⇡⇡ vacuum polarization.
There are other e↵ects from taste-changing but we only
need correct contributions that are non-analytic in m⇡

(and large enough to matter); all other e↵ects will ex-
trapolate away as we take the lattice spacing to zero.
The a-independence of our final results is evidence that
we have handled these corrections properly.

As noted in the main text, the largest corrections (7%)
are for our lightest pion masses. Corrections for our heav-
iest pions are about an order of magnitude smaller, and
therefore negligible compared to other errors. The correc-
tions are also negligible for s-quark vacuum polarization,
as discussed in our previous paper [14].

We tested our finite-volume analysis by analyzing sim-
ulations with three di↵erent volumes for our intermediate
lattice spacing and a pion mass of about 220 MeV (config-
uration sets 5–7). The raw data show variations between
the three volumes of 3.1(1.3)%. Our corrections, from
finite-volume/staggered-pion-masses and ⇢-mass rescal-
ing, reduce this variation by an order of magnitude; see
Figure 3. This is a non-trivial test of our corrections.

We also tested our finite-volume/staggered-pion cor-
rections by comparing results for individual Taylor co-
e�cients with experiment. Fig 9 shows the corrected

π
ρ

11

Substituting these results into our formalism for g � 2,
with m⇡ = m⇡+ = 0.13957, gives the leading contribu-
tions from ⇡⇡ loops and from the ⇢:

a

(⇡⇡)
µ = 71 ⇥ 10�10 (B27)

a

(⇢)
µ = 425 ⇥ 10�10 + O(g2

⇢⇡⇡) (B28)

This shows that the ⇢ by itself accounts for about 71%
of the total vacuum polarization contribution to aµ, with
⇡⇡ interactions adding another 12%.

3. Lattice Corrections

Lattice simulations modify the low-energy analysis
given above in two ways: 1) the lattice volume is finite;
and 2) pion-loop results are averaged over several tastes
of pion, each with a di↵erent mass. The second of these
is peculiar to formalisms, like HISQ, that use staggered
quarks. These e↵ects are largest in the ⇡⇡ vacuum polar-
ization function. To correct for these simulation artifacts,
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where qµ = q

µ = (qE , 0, 0, 0), Ei =
p
k2 + m

2
i , and nor-

mally ma = mb = m⇡. This implies that the ⇡⇡ vacuum
polarization function used in the previous section is given
by:
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2
E

3

Z
d

3k

(2⇡)32EaEb

k2

(Ea + Eb)3(q2
E + (Ea + Eb)2)

.

(B31)

The Taylor coe�cients ⇧(⇡⇡)
j derived in the previous sec-

tion are the coe�cients of q

2j
E in the expansion of this

expression when ma = mb = m⇡.
We correct for the finite spatial volume (L3) of the

lattice by replacing

Z
d

3k

(2⇡)3
! 1

L

3

1X

k
x

=�1

1X

k
y

=�1

1X

k
z

=�1
(B32)

where the sums are over discrete momenta k = 2⇡n/L for
all integer n, positive and non-positive. (We correct our
fits separately for the finite temporal length of the lattice,
which is, in any case, 1.5–3 times longer than in spatial
directions and so e↵ectively infinite.) We ignore the ef-
fect of the finite lattice spacing since the contributions of
interest are all ultraviolet finite (and quite infrared).

The second modification concerns the pion masses in
the vacuum polarization, and is specific to staggered-
quark actions like the HISQ action we use. In our sim-
ulations we use vector currents Jµ that are local, which
means that they carry taste ⇠µ. (We use the notation
of [34], which discusses quark doubling and taste sym-
metry at length, especially in Appendices A–D.) Taste
conservation means that the pion pairs must carry the
same total taste as the current but there are several dif-
ferent taste pairings that accomplish this. A current with
total taste ⇠µ can couple to pion pairs carrying tastes:

1. ⇠5 � ⇠µ5 (2 combinations);

2. ⇠⌫5 � ⇠⇢� where µ, ⌫, ⇢, and � are all di↵erent (6
combinations);

3. ⇠⇢� � ⇠⌫ where ⇢ = µ 6= ⌫ = � (6 combinations);

4. ⇠µ � 1 (2 combinations).

The total contribution is the average over these 16 possi-
bilities. We estimate the ⇡⇡ contribution to the vacuum
polarization in our simulations by averaging over the con-
tributions Eq. (B31) from each pairing of pion tastes,
with ma and mb set to the masses of the two pions. We
use pion masses for di↵erent tastes derived from MILC’s
results in [55] (see Table IV).

In Table IV we list corrections �⇧j for the moments
from each of our configuration sets. We add these to the
Monte Carlo results in order to correct for e↵ects due
to the finite volume and pion-mass taste splittings. We
estimate these corrections by approximating Eq. (B19)
with

⇧̂( � q

2
E , f⇢, m⇢, m⇡) = �⌃̂(�q

2
E , m⇡, m⇡)

+
f

2
⇢

2m

2
⇢

q

2
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⇣
1 + g⇢g⇢⇡⇡ ⌃̂(�q

2
E , m⇡, m⇡)

⌘2

q

2
E

⇣
1 + g

2
⇢⇡⇡ ⌃̂(�q

2
E , m⇡, m⇡)

⌘
+ m

2
⇢

(B33)

where ⌃̂ is the ⇡

+
⇡

� vacuum polarization function from
Eq. (B31), and we have replaced f̂ and m̂ by f⇢ and m⇢,
respectively. To obtain the correction for a given config-
uration set, we first evaluate this continuum vacuum po-
larization function using the (Goldstone) m⇡, m⇢, and f⇢

obtained from the configuration set (Table I), and then
we subtract from it the same quantity but with

⌃̂(�q

2
E , m⇡, m⇡) ! 1

16

X

⇠
a

,⇠
b

⌃̂V (�q

2
E , m⇡(⇠a), m⇡(⇠b))

(B34)
where ⌃̂V is evaluated for the finite volume of the con-
figuration (Eq. (B32)), and averaged over the staggered-
pion taste combinations ⇠a � ⇠b listed above. The correc-
tions �⇧j are the Taylor coe�cients of this di↵erence be-
tween continuum and finite-volume/staggered-pion vac-
uum polarizations.

The contribution to aµ from the first term in Eq. (B33)
is roughly five times larger than that from the second

5 times larger

rπ
2

Largest correction for lightest pion masses: 7%
Uncertainty: ±0.7%

aµ
LO,HVP

conn
ud( ) ! 610 9( ) ⋅10−10

small FVEs+discr. for
s quark contribution

Preliminary

Talk by R. S. Van de Water
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Mainz Group
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Figure 2: Data for the light quark contribution to the integrand eK(x0; mµ) Gud(x0), scaled in units of
the muon mass for ensembles G8 (top) and O7 (below). The coloured bands, which show the various
methods to constrain the long-distance behaviour, start at the respective value of xcut

0 as indicated by
the vertical lines.

light-quark contribution Gud, i.e.

G⇢⇢(x
0

) =
9

10
Gud(x

0

). (29)

The !-resonance is the lowest-lying state in the iso-scalar channel, which has a much smaller
width compared to the ⇢. In particular, the decay of the ! into three pions is strongly
suppressed, and thus the single exponential

GI=0(x
0

) / e�m!x0 (30)

is a good approximation for evaluating the iso-scalar contribution to the convolution integral
in eq. (7). By exploiting the fact that the ⇢�! splitting is small, we arrive at our final ansatz
for the long-distance contribution to the quark-connected light quark vector correlator, i.e.

Gud(x
0

)
ext

= G⇢⇢(x
0

)
ext

+
1

10
Gud(x

0

)
1�exp

. (31)

In other words, we replace the light iso-scalar correlator by a single exponential with m
V

= m
⇢

14

FVEs corrected with
Gounaris-Sakurai 
parameterisation

+
Lüscher formalism

mρ
exp  fit Γρ

GSparameters:

mπL = 4.0
mπ = 185 MeV

mπ = 268 MeV
mπL = 4.2

FVEs: 5% shift in
         for
and near-phys. point 
aµ mπL ≈ 4

ΔFVEsaµ ! 20.4 4.1( ) ⋅10−10

mπ = 140 MeV mπL = 4.0

interactionsππ
important for

t >1 fm

Preliminary
Talk by H. Meyer
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ETM Collaboration
Talk by S. Simula
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FVEs corrected with
2𝝅 Lüscher formalism

and GS
+

dual pQCD contributionDG et al. 2017

mρ gρππparameters: Rdual Edual
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pure FVEs:
∼5% correction to aµ

mπL ≈ 4mπ = 135 MeV
a2 → 0
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FVE correction @ a2 → 0
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PACS Collaboration
Izubuchi et al. 2018
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near-phys. mass point

Two ensembles
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positive contribution to aµ

FVEs estimated using TMR
comparison between two volumes 
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LO,HVP on L=5.4 fm is 10 ± 26( ) ⋅10−10

from L=8.1 fm @ mπ = 146 MeV
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Figure 9: (Left) Difference of integrand between 135 MeV pion data using reweighting method
and 139 MeV pion data on L/a = 64. Top and bottom panels present the comparison with
partially quenched case and extended temporal extension, respectively. (Right) The symbols

are same as left-panel for [ahvpµ ]lightlat up to tcut. Solid (dashed) lines denote the leading order of
ChPT with T/a = 64 (T/a = 128).
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Blum et al. 2018

expected to start at O(1/L^3)
(IR safe, neutral meson states,

vanishing charge radius)

DG et al. 2017

s/c contribution only
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FIG. 11. The di↵erence of window contributions from the lat-
tice and the R-ratio. We show �aW

µ = aW Lattice
µ �aW R�ratio

µ .

become noisy at long distances, we also note that any
choice of energy Ẽ with Ẽ � E

⇤
T

provides a strict lower
bound.

Consistency of R-ratio and lattice data: In
Fig. 11 we show the di↵erence of window contributions
a

W

µ

(t0, t1,�) from the lattice and the R-ratio with t0 = t,
t1 = t + 0.1 fm, and smearing parameter � = 0.15 fm.
These localized windows are well-defined in the lattice
and the R-ratio calculation and allow for a more precise
check of consistency at fixed Euclidean time. While we
find the lattice calculation to prefer a slightly larger value
compared to the R-ratio data of Ref. [1], this di↵erence
is statistically not significant. We will reduce the lat-
tice uncertainties in the near future in order to provide
a more stringent cross-check between both methods.

As noted in the main text, our result for a combined
lattice and R-ratio analysis shown in Fig. 7 is based
on the R-ratio compilation used in “Jegerlehner 2017”
but is in better agreement with the “HLMNT 2011”,
“DHMZ 2012”, and “DHMZ 2017” results than the pure

“Jegerlehner 2017” result. Our value has replaced over
one third of the R-ratio contribution with lattice data
and receives its uncertainty in approximate equal parts
from lattice and R-ratio data. We are keen on incor-
porating alternate compilations of data in future studies
and to explore the degree to which the lattice analysis
can help to understand and reduce tensions between the
di↵erent compilations.

Estimating QED finite-volume errors: We esti-
mate the finite-volume uncertainty of the hadronic vac-
uum polarization QED corrections by performing the cal-
culation using an infinite-volume photon (QED1) in ad-
dition to the QEDL prescription. We take the di↵erence
of both computations as systematic uncertainty due to
the finite volume. The procedure for both calculations
only di↵ers in the photon propagator that is used. The
QEDL prescription uses the photon propagator
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, (S 7)
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the restriction that k

2
0 + k

2
1 + k

2
2 6= 0. For QED1 we use

instead
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ikx (S 8)

with the constraint
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 x
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2
(S 9)

for µ 2 [0, 1, 2, 3].

QEDL prescription for
zero mode subtraction

photon propagator

QED∞
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As noted in the main text, our result for a combined
lattice and R-ratio analysis shown in Fig. 7 is based
on the R-ratio compilation used in “Jegerlehner 2017”
but is in better agreement with the “HLMNT 2011”,
“DHMZ 2012”, and “DHMZ 2017” results than the pure

“Jegerlehner 2017” result. Our value has replaced over
one third of the R-ratio contribution with lattice data
and receives its uncertainty in approximate equal parts
from lattice and R-ratio data. We are keen on incor-
porating alternate compilations of data in future studies
and to explore the degree to which the lattice analysis
can help to understand and reduce tensions between the
di↵erent compilations.

Estimating QED finite-volume errors: We esti-
mate the finite-volume uncertainty of the hadronic vac-
uum polarization QED corrections by performing the cal-
culation using an infinite-volume photon (QED1) in ad-
dition to the QEDL prescription. We take the di↵erence
of both computations as systematic uncertainty due to
the finite volume. The procedure for both calculations
only di↵ers in the photon propagator that is used. The
QEDL prescription uses the photon propagator
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Fig. 29. Hadronic higher order VP contributions: a)-c) involving LO vacuum polarization, d) involving HO vacuum polarization
(FSR of hadrons).

perturbative QCD prediction. Less problematic is the space–like (Euclidean) region −q2 → ∞, since it is
away from thresholds and resonances.

The time–like quantity R(s) intrinsically is non-perturbative and exhibits bound states, resonances, in-
stanton effects (η′) and in particular the hadronization of the quarks. In applying pQCD to describe real
physical cross–sections of hadro–production one needs a “rule” which bridges the asymptotic freedom regime
with the confinement regime, since the hadronization of the colored partons produced in the hard kicks into
color singlet hadrons eludes a quantitative understanding. The rule is referred to as quark hadron dual-
ity 15 [231,232], which states that for large s the average non–perturbative hadron cross–section equals the
perturbative quark cross–section:

σ(e+e− → hadrons)(s) ≃
∑

q
σ(e+e− → qq̄, qq̄g, · · ·)(s) , (129)

where the averaging extends from the hadron production threshold up to s–values which must lie sufficiently
far above the quark–pair production threshold (global duality). Qualitatively, such a behavior is visible in
the data Fig. 22 above about 2 GeV between the different flavor thresholds sufficiently above the lower
threshold. A glance at the region from 4 to 5 GeV gives a good flavor of duality at work. Note however that
for precise reliable predictions it has not yet been possible to quantify the accuracy of the duality conjecture.
A quantitative check would require much more precise cross–section measurements than the ones available
today. Ideally, one should attempt to reach the accuracy of pQCD predictions. In addition, in dispersion
integrals the cross–sections are weighted by different s–dependent kernels, while the duality statement is
claimed to hold for weight unity. One procedure definitely is contradicting duality reasonings: to “take pQCD
plus resonances” or to “take pQCD where R(s) is smooth and data in the complementary ranges”. Also
adjusting the normalization of experimental data to conform with pQCD within energy intervals (assuming
local duality) has no solid foundation. Nevertheless, the application of pQCD in the regions advocated
in [229] seems to be on fairly solid ground on a phenomenological level. A more conservative use of pQCD
is possible by going to the Euclidean region and applying the Adler function [233] method as proposed in
Refs. [234,165,235]. As mentioned earlier, the low energy structure of QCD also exhibits non–perturbative
quark condensates. The latter also yield contributions to R(s), which for large energies are calculable by the
operator product expansion of the current correlator Eq. (64) [236]. The corresponding ⟨mq q̄q⟩/s2 power
corrections in fact are small at energies where pQCD applies [234,82] and hence not a problem in our context.

4.2. Higher Order Hadronic Vacuum Polarization Corrections

At order O(α3) there are several classes of hadronic VP contributions with typical diagrams shown in
Fig. 29. They have been estimated first in [187]. Classes (a) to (c) involve leading hadronic VP insertions and
may be treated using DRs together with experimental e+e−–annihilation data. Class (d) involves leading
QED corrections of the charged hadrons and correspond to the inclusion of hadronic final state radiation
(FSR).

The O(α3) hadronic contributions from classes (a), (b) and (c) may be evaluated without particular
problems as described in the following.

15Quark–hadron duality was first observed phenomenologically for the structure function in deep inelastic electron–proton
scattering [230].
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Discrepancy between 𝝌PT predictions
and lattice determinations with interacting pions

New systematic lattice study
with several volumes has been performed

Small QED FVEs
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Sizeable FVEs for present lattices in aµ
LO,HVP ud( )

 Most Collaborations adopt model estimates so far
(new recent efforts for first-principles determinations)
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