HVP lattice finite-volume corrections

di Fisica Nucleare

Second Plenary Workshop of the Muon g-2 Theory Initiative Helmholtz Institut Mainz

18th - 22nd June 2018

OUTLINE

Motivations

Current status from Collaborations

LO-HVP FVEs

Chiral Perturbation Theory Blum et al. 2018; Borsanyi et al. 2017; Chakraborty et al. 2017 Bijnens and Relefors 2017; Aubin et al. 2016

Gounaris-Sakurai parameterisation + Lüscher formalism

Della Morte et al. 2017 ETMC, talk by S. Simula RBC/UKQCD talk by C. Lehner (new updates)

Time-momentum representation Izubuchi et al. 2018

Current status from Collaborations

$f(Q^{2}) \underset{\mu \nu}{\mathcal{X}} \mathbf{PT}_{\Pi(Q)} = (\delta_{\mu \nu}Q^{2} \mathbf{P}_{Q\mu}Q_{\nu}) \Pi(Q^{2})$ Aubin et al. 2016 $a_{\mu}^{\text{LO,HVP}} [Q_{\text{max}}^{2}] = 4\alpha_{em}^{2} \int_{0}^{Q_{\text{max}}} dQ^{2} f(Q^{2}) [\Pi(Q^{2}) - \Pi(0)] \underset{\text{odd}}{\overset{\text{odd}}{\bigoplus}} \frac{Q^{2} \approx m_{\mu}^{2}/4}{\underset{\mu \nu}{\bigoplus}} \underbrace{\text{MILC ensemble}}_{\substack{a = 0.059 \text{ fm} \\ m_{\pi} = 220 \text{ MeV}}}_{\substack{a = 0.059 \text{ fm} \\ m_{\pi} = 220 \text{ MeV}}}$ I = 3.8 fm

taste-split pion spectrum

$$\begin{array}{c}
 \text{NLO } \chi \text{PT; PBCs} \\
 \text{II}_{\mu\nu}^{\text{ChPT}}(Q) = \frac{10}{9} 4\pi \alpha_{em} \begin{bmatrix} Q^2 \left[\text{GeV}^2 \right] \\
 \text{connected} \\
 \text{contribution} \\
 4 \frac{1}{L^3T} \sum_{p} \frac{\sin \left(p + Q/2 \right)_{\mu} \sin \left(p + Q/2 \right)_{\nu}}{\left(2 \sum_{\kappa} (1 - \cos p_{\kappa}) + m_{\pi}^2 \right) \left(2 \sum_{\kappa} (1 - \cos (p + Q)_{\kappa}) + m_{\pi}^2 \right)} \\
 - 2 \, \delta_{\mu\nu} \frac{1}{L^3T} \sum_{p} \left(\frac{\cos p_{\mu}}{\left(2 \sum_{\kappa} (1 - \cos p_{\kappa}) + m_{\pi}^2 \right)} \right) \end{bmatrix} \\
 \text{Staggered } \chi \text{PT} \longrightarrow \begin{array}{c}
 \text{weighted average}
 \end{array}$$

0.20

χ PT Groups

FVEs sizeable (few %) for present lattices

RBC/UKQCD Collaboration

Blum et al. 2018

<u>Two ensembles</u>

 $L = 5.4 \div 5.5 \text{ fm}$ $T = 10.7 \div 11 \text{ fm}$

 $a = 0.084 \div 0.114$ fm

Physical mass point

 $m_{\pi}L = 3.8 \div 3.9$

BMW Collaboration

$L = 6.1 \div 6.6 \text{ fm}$			
	β	$a [\mathrm{fm}]$	
$T = 8.6 \div 11.3 \text{ fm}$	3.7000	0.134	
	3.7500	0.118	
Physical mass point	3.7753	0.111	
nysicai mass point	3.8400 3.9200	0.095 0.078	
	4.0126	0.078	
$m_{\pi}L = 4.2 \div 4.5$			

FVEs corrected with <u>NLO SU(2) S_χPT</u> (I=I channel only) fixed $m_{\pi}L \simeq 4.1$

 $(T \times L/a^2)$

 64×48

 96×56

 84×56 96×64

 128×80

 144×96

 $\Delta^{FVEs} a_u^{I=1} (ud) = 15.0(15.0) \cdot 10^{-10}$

extrapolated to the continuum limit (six lattice spacings ranging from 0.064 to 0.134 fm) 10

HPQCD Collaboration

Chakraborty et al. 2017

Mainz Group

ETM Collaboration

FVE correction (*a*² \rightarrow **0**

interacting π - π : dual + π - π representation [note that $\Delta a_{\mu}^{HVP}(L)$ depends approximately on $M_{\pi}L$ only]

PACS Collaboration

Izubuchi et al. 2018

Two ensembles $L = T = 5.4 \div 8.1 \text{ fm}$ a = 0.085 fmnear-phys. mass point $m_{\pi}L = 3.8 \div 5.8$ Backward state propagation (2T=10.8 fm)positive contribution to a_{μ} 4% @ *t_{cut}*=2.6 fm

0.02 r

Discussion points

<u>Sizeable FVEs</u> for present lattices in $a_{\mu}^{\text{LO,HVP}}(ud)$

New systematic <u>lattice study</u> with <u>several volumes</u> has been performed

Discrepancy between χ PT predictions and lattice determinations with interacting pions

Most Collaborations adopt model estimates so far (new recent efforts for first-principles determinations)

Small QED FVEs

Acknowledgments

Special thanks to

J. Bijnens; A. X. El-Khadra; A. Gérardin; M. Golterman; C. Lehner; L. Lellouch; A. Portelli; R. S. Van de Water; G. von Hippel