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Intro

Different analytic evaluations of HLbL

Jegerlehner-Nyffeler 2009

Contribution BPaP(96) HKS(96) KnN(02) MV(04) BP(07) PARV(09)  N/JN(09)
% n,n' 85-+13 82.746.4 83+12 11410 - 114+13 99-+16
7, K loops —19+13 —4.548.1 - — - —19+19 —19+13

"""+ subl. in Ng - - - 0+10 - — -
axial vectors 2.5+1.0 1.7£1.7 — 22+ 5 — 15+10 22+5
scalars —6.8+2.0 — — - - —7+7 —7+2
quark loops 21£3 9.7+11.1 — — — 2.3 21+3
total 83132 89.6+15.4 80+40 136+25 110+40 105+26 116+39
S=Sanda Kn=Knecht

Legenda: B=Bijnens Pa=Pallante P=Prades H=Hayakawa K=Kinoshita

N=Nyffeler M=Melnikhov V=Vainshtein dR=de Rafael

J=Jegerlehner

» large uncertainties (and differences among calculations) in
individual contributions

» pseudoscalar pole contributions most important

» second most important: pion loop, i.e. two-pion cuts
(K's are subdominant)

» heavier single-particle poles decreasingly important



Intro

Advantages of the dispersive approach

» model independent
» unambiguous definition of the various contributions

» makes a data-driven evaluation possible
(in principle)

» if data not available: use theoretical calculations of
subamplitudes, short-distance constraints etc.
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Intro

Advantages of the dispersive approach

» model independent
» unambiguous definition of the various contributions

» makes a data-driven evaluation possible
(in principle)

» if data not available: use theoretical calculations of
subamplitudes, short-distance constraints etc.

» First at’[emp’[S: GC, Hoferichter, Procura, Stoffer (14)

Pauk, Vanderhaeghen (14)
» why hasn't this been adopted before?

» similar philosophy, with a different implementation:
SChWinger sum rule Hagelstein, Pascalutsa (17)  — talk by F. Hagelstein



Intro

Dispersive approach for hadronic vacuum polarization

(@) =1 [ a6 (0T}, (0)0) = (aa, ~ 9.7 N(@)

where j#(x) =, Qiqi(x)¥*qi(x), i = u, d, s is the em current

Lorentz invariance: 2 structures
gauge invariance: reduction to 1 structure

Lorentz-tensor defined in such a way that the function
MN(g?) does not have kinematic singularities or zeros

N(g?) := N(g?) — N(0) satisfies

2 [e%s) M
= o Q- ImI(t)
@) =7 AM;r tt— )
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Intro

Unitarity for HVP

For HVP the unitarity relation is simple and looks the same for
all possible intermediate states

ImMM(g?) « o(e" e~ — hadrons)

which implies (H;(t) = i-th hadronic state)

a(e+e — Hi(t))
Z /4M2 47TOé t— q2)
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Outline

Setting up the stage:
Gauge invariance and crossing symmetry
Master Formula



HLbL tensor Gauge inv. & crossing Master Formula

The HLDbL tensor (much less easy...)
HLbL tensor:

e — ¢ [ [dy [ oz e-iivarraszad o T{ju (0 ()N O} 0)

B=k=qi+q+q k=0
with Mandelstam variables

s=(g+@)? t=(q1+q)? u=(q+q)?
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The HLDbL tensor (much less easy...)
HLbL tensor:

e = 2 [ [ay [ oz emitearras=a) o T (G () (0)) 0

GB=Kk=q+q@+aqg k=0

General Lorentz-invariant decomposition:

Mo — g,uug)\al—ﬂ_'_gu)\gual—IZ_i_guagV)\nS_i_Z ql/fq;’q}i‘q;’ﬂ;}kl—i—. ..
ij.k,l

consists of 138 scalar functions {N', M2, ...}, butin d = 4 only
136 are linearly independent Eichmann et al. (14)



HLbL tensor Gauge inv. & crossing Master Formula

The HLDbL tensor (much less easy...)
HLbL tensor:

e — ¢ [ [dy [ oz e-iivarraszad o T{ju (0 ()N O} 0)

GB=Kk=q+q@+aqg k=0
General Lorentz-invariant decomposition:
AT = g g M +g" g M +g" g™ M+ ) af'qf g al M+ - -
ikl

consists of 138 scalar functions {N', M2, ...}, butin d = 4 only
136 are linearly independent Eichmann et al. (14)

Constraints due to gauge invariance? (see aiso Eichmann, Fischer, Heupel (2015))

= Apply the Bardeen-Tung (68) method-+Tarrach (75) addition
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Gauge-invariant hadronic light-by-light tensor

Applying the Bardeen-Tung-Tarrach method to M***? one ends

up with: GC, Hoferichter, Procura, Stoffer (2015)
> 43 baSiS tenSOI’S (BT) in d = 4: 41=no. of helicity amplitudes
> 1 1 additional ones (T) to guarantee basis completeness everywhere

» of these 54 only 7 are distinct structures

54
n,uz/)\o — Z -,-i,uu)\ol—li
i=1
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Gauge-invariant hadronic light-by-light tensor

Applying the Bardeen-Tung-Tarrach method to M***? one ends
up with: GC, Hoferichter, Procura, Stoffer (2015)

A A S5
TIVAT = B ATy 4o 303, Gas,

v

A A A
T = (abay — a1 g™ ) (0305 — a5 - ag™7 ),
T = (gl — a1 29" ) (o1 - au (0705 — a1 - 98977 ) + @ aT a1 - a5 — 47 a7 G - 0a)
T = (aha —ar- 29" ) (% (o705 — a1 - 99™") + @' a5 a1 - a5 — 475 G - 0a)
T = (ahay — a1 0" ) (0001 - — 902 9s) (a5 a1 94 — a7 %2 - )
T = (e as—dfar o) (650805 — a0 a5 + ™7 (a5 - % — 0% - o4)
+9"7 (Bw- -0 n)+e" (Fan wu-08an au)),
Ti N = a3 (a1 %% - sy 0™ — @ - o - i 9™ + oo (a7 95 — a2 a1 - )
+ a1 04 B — % waf B +a - e (59N —ahg))
A (q1 ©G4Q2 - 3059V — ao - quqr - 939597 + gy (a7 de - qu — 93 Gt - Qa)
oo b o

+a1- a0} 95 a5 — G2 - 930 9 A + a1 - e - a5 (a5 9" — df'0"))

+0s - ( (@af — a1 ag™) (@5 — @ a9”) — (@a — - aug™) (e —ar - wg"") ).
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Gauge-invariant hadronic light-by-light tensor

Applying the Bardeen-Tung-Tarrach method to M***? one ends

up with: GC, Hoferichter, Procura, Stoffer (2015)
> 43 baSiS tenSOI’S (BT) in d = 4: 41=no. of helicity amplitudes
> 1 1 additional ones (T) to guarantee basis completeness everywhere

» of these 54 only 7 are distinct structures

» all remaining 47 can be obtained by crossing
transformations of these 7: manifest crossing symmetry

» the dynamical calculation needed to fully determine the
LbL tensor concerns these 7 scalar amplitudes

54
n,uz/)\o — Z -,-i,uu)\ol—li
i=1
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Gauge-invariant hadronic light-by-light tensor

Applying the Bardeen-Tung-Tarrach method to M***? one ends

up with: GG, Hoferichter, Procura, Stoffer (2015)
» 43 basis tensors (BT) in d = 4: 41=no. of helicity amplitudes
» 11 additional ones (T) o guarantee basis completeness everywhere
» of these 54 only 7 are distinct structures

v

all remaining 47 can be obtained by crossing
transformations of these 7: manifest crossing symmetry

v

the dynamical calculation needed to fully determine the
LbL tensor concerns these 7 scalar amplitudes
MHvro — i Tiuu)\ani
i=1
The 54 scalar functions I1; are free of kinematic singularities
and zeros and as such are amenable to a dispersive treatment



HLbL tensor Gauge inv. & crossing Master Formula

HLbL contribution to a,

From gauge invariance:

0
W,\a(ch,%k g1 — 672) 8k” ,wAp(Ch,Ck, k—aqi— Q2)-

Contribution to a,,: m:=m,

w5 T (0 + MB?.47)(p + m)THE (o) }

a, =

e[S fde 1 atlprgene-gremy
e (2m)* ) (2m)* G245 (a1 + 92)? ((p+q1)2—m?) ((p—qe)2—m?)

0
X %null)\o(q1aq27k - Q1 - C/2)

k=0

BTT basis (no kin. singularities!) = limit kK, — 0 unproblematic



HLbL tensor Gauge inv. & crossing Master Formula

Master Formula

aHLbL:_ee/ d'an d'q 312 Ti(ar @ PG, G, —G1 — G)
' (2m)* (2m)* gf g5 (a1 + G2)2[(p + ¢1)? — m2]I(p — q2)? — m?

» Ti: known kernel functions
» [;: linear combinations of the IN;

» 5 integrals can be performed with Gegenbauer polynomial
techniques

GC, Hoferichter, Procura, Stoffer (2015)



HLbL tensor Gauge inv. & crossing Master Formula

Master Formula

After performing the 5 integrations:

all;lLbL _ /dQ4 /dQ4 /dT\/ﬁZT (Q1, @, 7) '(01,02,7')

482

where Qf* are the Wick-rotated four-momenta and  the
four-dimensional angle between Euclidean momenta:

Q- Q= Q]| Q|7

The integration variables Q; := |Q], Q2 := | Q|-

GC, Hoferichter, Procura, Stoffer (2015)
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Outline

A dispersion relation for HLbL



HLbL dispersive

Setting up the dispersive calculation

We split the HLbL tensor as follows:

7%-pole mbox | &
I_IMI/)\O' = I_IW/\U —|— I_I/.Ll/)\a' —|— I_I,U«ll)\O' _|- .

Pion pole: imaginary parts = §-functions

Projection on the BTT basis: easy v/

Our master formula=explicit expressions in the literature v/
Input: pion transition form factor ~ talks by Hoid, Fischer, Roig, Sanchez-Puertas
First results of direct lattice calculations - taiks by L. Jin and by Gerardin



HLbL dispersive

Setting up the dispersive calculation

We split the HLbL tensor as follows:

_ 7%-pole 7-box | [
Mo = ﬂuma + |_|/W>\U + Mwre + -+

m-box with the BTT set:

— we have constructed a Mandelstam representation for the
contribution of the 2-pion cut with LHC due to a pion pole

— we have explicitly checked that this is identical to sQED
multiplied by FJ;(s) (FSQED)



HLbL dispersive

Setting up the dispersive calculation

We split the HLbL tensor as follows:

n0-pole mbox | fA
nm/)\g = nw/)\g + |_|/1V>\()' + rl,uu)\a +

CI1 FV %)FV Q3

DK




HLbL dispersive
Setting up the dispersive calculation
We split the HLbL tensor as follows:

__ n%-pole mbox | &
n/w)«f - n#l/)\a + I_INV)\U + HW/\U + o

- -

7 | N

N\
~

4

7
~ - -

The “rest” with 27 intermediate states has cuts only in one
channel and will be
calculated dispersively after partial-wave expansion
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Setting up the dispersive calculation
We split the HLbL tensor as follows:

_ p°-pole mbox |
I_IIW)‘O' - n#l/)\a + nl“/)xcf + I_IIWAU +

Contributions of cuts with anything else other than one and two
pions in intermediate states are neglected in first approximation

of course, the n, ” and other pseudoscalars pole contribution,
or the kaon-pole contribution can be calculated within the same
formalism



HLbL dispersive

Partial wave expansion for 27 contributions

To complete the program of writing down a dispersion relation
for two-pion contributions is not easy:

>

>

unitarity relations are diagonal in a helicity amplitude basis;
the helicity basis relevant for (g — 2),, is the one with one
on-shell photon, which has 27 elements;

in the limit g2, g — 0 of the HLbL tensor the number of
independent elements of the BTT set drops from 41 to 27;
there is freedom in the choice of this subset
(singly-on-shell basis);

the arbitrariness in the choice of the 27 elements of the
singly-on-shell basis does not influence the final result
because of sum rules

these sum rules follow from the assumption that the HLbL
tensor has a uniform behaviour at short distances
Pascalutsa, Pauk, Vanderhaeghen (12) forward-kinematics
sum-rules are a special case of our general sum rules



HLbL dispersive

S-wave 27 contributions

a3 :% 4;; dslwiqg)z (48" mrl, L (s) = (s + & — BN — df + ) mGy . ,.(s"))
as :% . 4;; dt’ m (4z’ mh, ()~ (' + & — @)t —df+ ) Imh80_++(t/))

as :% 4:27 dU/m (4u/ mhl, ()= (u +65— @) —ds+ q§)11nh80YA+(u/))
ﬁ1s1 :% 2 dulm (2 Imh3+,++(ul) - - qs - qg)lmhgo,JrJr(u'))

[IEA :% 4M3r dt'm (2, () = (' — & — gy mAGy (1))

g, :% 4;2' ds,m (2 Imh°_+’+_(s') — (s - - q§)1n1h807++(s’))

Analogous expressions for the D, G and all higher waves have
been derived but are too long to be shown
Calculation of D-wave contributions: — talk by P. Stoffer
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Outline

Individual contributions
- Pion-pole contribution
- Pion-box contribution
- Pion rescattering contribution
- Missing contributions

m-pole m-box m-resc. missing bits



Contributions m-pole m-box m-resc. missing bits

Pion-pole contribution

>

Expression of this contribution in terms of the pion
transition form factor already known Knecht-Nyffeler (01)

Both transition form factors must be included:

ﬁ1 _ Fﬂo’y*’y*(q127qg)Fﬁov"’y*(qg‘:0)
CI§ - M20

us

dropping one to satisfy short-distance constraints can only
be seen as a model Melnikov-Vainshtein (04)

data on singly-virtual form factor available ceLio, cLeo, Bagar, Belle

several calculations of the transition form factors in the
literature, recent developments — talks by Fischer, Roig, Sanchez-Puertas

dispersive approach works here too —+ talks by Hoid

quantity where lattice calculations can have a significant
impaC’[ — talks by L. Jin and A. Gerardin
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Pion-box contribution

_ 7%-pole FSQED | [
I_IIW)\U - np,u)\o + I_I,LLI/)\U + I_IIW)\U +-




Contributions m-pole m-box m-resc. missing bits

Pion-box contribution

The only ingredient needed for the pion-box contribution is the
vector form factor

L 1 1 1—x
7o = PR B @Bgs [ & [ ayiry)

where

8xy(1 —2x)(1 —2y)

/ =
1x.) Aq23A03

and analogous expressions for /4 717,39 54 and

Aoz = M2 — xyqZ — x(1 —x — y)g5 — y(1 — x — y)45,
Doz = M2 — x(1 - X)g5 — y(1 - y)a5



Contributions m-pole m-box m-resc. missing bits

Pion-box contribution

0.8

|FY T

0.4+

0.2f

0.6}

. NA7 *
- JLab 1y
I 1 2
10

I 0.2 0.4 0.6 0.8 1

5 [GeV?]
!
X 08 06 04 02 0
s [Ge\/ﬂ

Uncertainties are negligibly small:

a;®P = —15.9(2) - 107"



Contributions m-pole m-box m-resc. missing bits
Pion-box contribution
Contribution BPaP(96) HKS(96) KnN(02) MV(04) BP(07) PARV(09)  N/IN(09)
7r0, n,n’ 85+13 82.7+6.4 83+12 114410 - 114413 99416
7, K loops —19+13 —4.54+8.1 - — - —19+19 —19+13
"""+ subl. in N — — — 0+10 — — —
axial vectors 2.54+1.0 1.7+£1.7 - 22+5 - 15+10 22+5
scalars —6.8+2.0 - — — — —7+7 —7+2
quark loops 21£3 9.7+11.1 - — - 2.3 21+3
total 83+32 89.6+15.4 80+40 136425 110440 105426 116439

Uncertainties are negligibly small:

gy = -15.9(2)- 107"
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Pion-box saturation with photon virtualities

100
90
80
70
60 /
50 /
40
2 /
ol /)
10
oL
0 0.2 0.4 0.6 0.8 1 1.2 1.4
cutoff on the virtualities in GeV

Pion-box saturation in %




Contributions m-pole mw-box m-resc. missing bits

Check of the partial-wave formalism

Comparison partial-wave expansion of the pion-box vs. full result

Jmax ‘ 5Jmax AJmax

0 [292% 554%
2 10.4% 20.9%
4 43% 11.0%
6 24% 6.2%
8 1.5%  3.7%
10 1.0% 2.4%
12

14

0.7% 1.6%
0.6% 1.1%

where
m-box, PW m-box, PW ambox
5 —1_ 14y Jmax A L s JImax H
Jmax - aZ'bOX Imax az—box|

Convergence for real helicity amplitudes should be much better
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First evaluation of S- wave 2r7-rescattering

Omneés solution for v*~+* — 77 provides the following:

XXy

recursive  PWE, no LHC
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First evaluation of S- wave 2r7-rescattering

Omneés solution for v*~+* — 77 provides the following:

XX e -

recursive  PWE, no LHC



Contributions m-pole mw-box m-resc. missing bits

First evaluation of S- wave 2r7-rescattering
Based on:
» taking the pion pole as the only left-hand singularity
» = pion vector FF to describe the off-shell behaviour
» 7 phases obtained with the inverse amplitude method

[realistic only below 1 Gev: accounts for the f;(500) + unique and well defined extrapolation to co]

» numerical solution of the v*~* — & dispersion relation

S-wave contributions: aZ’f]Zg""e LHC — _g(1) x 10—
il in 10~ 1" units
cutoff ‘ 1GeV 1.5GeV 2GeV 00
I=0]| —-9.2 -95 —-983 -88
=2 2.0 1.3 1.1 0.9

sum —7.3 -83 -83 -79
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First evaluation of S- wave 2r7-rescattering
Based on:
» taking the pion pole as the only left-hand singularity
» = pion vector FF to describe the off-shell behaviour
» 7 phases obtained with the inverse amplitude method

[realistic only below 1 Gev: accounts for the f;(500) + unique and well defined extrapolation to co]

» numerical solution of the v*~* — & dispersion relation

S-wave contributions: axgg""e LHC — _g(1) x 10—
il in 10~ 1" units
cutoff ‘ 1GeV 1.5GeV 2GeV 00
I=0]| —-9.2 -95 —-983 -88
=2 2.0 1.3 1.1 0.9
sum -7.3 -83 -83 -79

Recall —-Box: & " =-15.9(2)- 10~ "



Contributions m-pole mw-box m-resc. missing bits

First evaluation of S- wave 2r7-rescattering

Contribution BPaP(96) HKS(96) KnN(02) MV(04) BP(07)  PdRV(09)  N/IN(09)
7r0,'r],”r]' 85+13 82.7+6.4 83+12 114+10 — 114+13 99+16
7, K loops —19£13 —4.51+8.1 — — — —19£19 —19+£13

"""+ subl. in N — — - 0+10 — - —
axial vectors 2.5+1.0 1.7£1.7 - 22+ 5 - 15+10 2245
scalars —6.8+£2.0 — - - - 77 —7£2
quark loops 21£3 9.7+11.1 - — - 2.3 21+3
total 83+32 89.6+15.4 80+40 136+25 110140 105126 116+39
- : . mm,m-pole LHC _
S-wave contributions: a, s =-8(1) x 107"
J=

P in 101" units

cutoff | 1GeV 1.5GeV 2GeV oo

/=0 ] -92 -95 -93 -838
=2 2.0 1.3 1.1 0.9
sum -7.3 -83 -83 -79

Recall m-Box: & " = -15.9(2)- 10"



Contributions m-pole mw-box m-resc. missing bits

Our first numerical result

Two-pion contributions to HLbL:

pion box rescattering contribution



Contributions m-pole mw-box m-resc. missing bits

Our first numerical result

Two-pion contributions to HLbL:

pion box rescattering contribution

az—box + a;:z,:gole LHC _ 724(1) ) 10_11




Contributions m-pole mw-box m-resc. missing bits

v*~v* — 7 contribution from other partial waves

» formulae get significantly more involved with several
subtleties in the calculation — talk by P. Stoffer

» in particular sum rules which link different partial waves
must be satisfied by different resonances in the narrow
width approximation Danilkin, Pascalutsa, Pauk, Vanderhaeghen (12,14,17)

— talk by Danilkin

» data and dispersive treatments available for on-shell
photons

» dispersive treatment for the singly-virtual case and check
with forthcoming data is very important - taiks by Danikin & Redmer



Contributions m-pole m-box m-resc. missing bits

Mass scaling of known contributions

Simple parametrization of the mass scaling of various

contributions: _

al, = >

au(mn) (MP + /8)’y
4.x10_10;
3.x10*10;
2.x 10—10 »
’I.x10_10;

500 1000 1;(;0‘-- '2—05(;‘ ——éééo myr, [MeV]

Pion-pole (LMD+V form factor):

a=446-10"° 3 =257 MeV ~ = 1.89



Contributions m-pole 7-box m-resc. missing bits

Mass scaling of known contributions

Simple parametrization of the mass scaling of various

contributions: J. Monnard

al, = S

o) (Mp + B)7

14x10710}

12x10-10F
1.x10710}
8.x107 11
6.x10711
ax101}
2.x10~11

[ mp, [MeV]

500 1000 1500 2000 2500

Pseudoscalar resonance (RxT couplings):

a=71-10"7 3 =246 MeV ~ =1.42
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Mass scaling of known contributions

Simple parametrization of the mass scaling of various
contributions: J. Monnard

(0]
a’ =

box( K (MP+/6)’Y

ay my)
14x10-Mf
1,2x10-“§
1.x10711f
8)(10“12;
6Ax10_12;
4.x10712}

2.x10712 L

my, [MeV]
500 1000 1500 2000 2500

Pion-box (VMD form factor):

a=75-10"2 3 =0MeV ~=23.78



Contributions m-pole m-box m-resc. missing bits

Short-distance contraints

» short-distance constraints on n-point functions in QCD is a
well known issue

» low- and intermediate-energy representation in terms of
hadronic states doesn’t typically extrapolate to the right
high-energy limit

» requiring that the latter be satisfied is often essential to
obtain a description of spectral functions which leads to
correct integrals over them vast literature [de Rafael, Goltermann, Peris,...]

» implementing such an approach for HLbL not very simple

GC, Hagelstein, Laub, work in progress

» alternative strategy: describe the high-energy region by the
quark loop. The transition from the hadronic to the quark
regime must be done properly — talks by Hoferichter & Hoid
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Outline

Outlook and Conclusions



Conclusions

Conclusions

» The HLbL contribution to (g — 2),, can be expressed in
terms of measurable quantities in a dispersive approach

» master formula: HLbL contribution to a, as triple-integral
over scalar functions which satisfy dispersion relations

» the relevant measurable quantity entering the dispersion
relation depends on the intermediate state:

» single-pion contribution: pion transition form factor
» pion-box contribution: pion vector form factor
» 2-pion rescattering: v*~*) — 77 helicity amplitudes

these three contributions (S-wave for the latter) have been
calculated with remarkably small uncertainties

» work on calculating other contributions and estimating
missing pieces is in progress



Conclusions

Outlook

» More work is needed to complete the evaluation of
contributions of 27 intermediate states esp. for ¢ > 2

» take into account experimental constraints on y(*)y — 77

» estimate the dependence on the g of the second photon
(theoretically, there are no data on v*y* — #r — Lattice?)

» = solve the dispersion relation for the helicity amplitudes of
~*v* — 7, including a full treatment of the LHC

» same formulae apply to heavier n < 2 intermediate states
(n") or KK); for n > 2 the formalism must be extended:;

» a satisfactory implementation of short-distance constraints
is in progress
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A reliable evaluation of the HLbL requires many different contributions
by and a collaboration among (lattice) theorists and experimentalists
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