The muon g-2: a new data-based analysis

Alex Keshavarzi

with Daisuke Nomura, Thomas Teubner (KNT18)

[arXiv:1802.02995, accepted for publication in Phys. Rev. D (in press)]

Muon g-2 Theory Initiative Workshop, JGU Mainz

20th June 2018

Hadronic cross section input

Must build full hadronic cross section/*R*-ratio...

Alex Keshavarzi (KNT18)

S) S

Building the hadronic R-ratio

 $\underline{m_{\pi} \leq \sqrt{s} \leq 2 \,\, \mathrm{GeV}}$

- Input experimental hadronic cross section data*
- Combine all available data in exclusive hadronic final states $(\pi^+\pi^-, K^+K^-, ...)$
- Sum ~ 35 exclusive channels
- Detailed data analysis
- Robust treatment of experimental errors
- Estimate missing data input (isospin relations, ChPT...)

$$2 \le \sqrt{s} \le 11.2 \,\, \mathrm{GeV}$$

- Can use experimental inclusive R data* or pQCD
- Must use data at quark flavour thresholds
- Combine all available *R* data
- Robust treatment of experimental errors
- Include narrow resonances

 $\underline{11.2 \leq \sqrt{s} < \infty ~ \mathrm{GeV}}$

• Calculate R using pQCD (rhad)

* σ_{had} experiments

- KLOE
- BaBar
- SND
- CMD-(2/3)
- KEDR
- BESIII

Question: for reliable precision, how are data correlated and how should those correlations be implemented?

Data combination: setup

\Rightarrow Re-bin data into *clusters*

- \rightarrow Scan cluster sizes for preferred solution (error, χ^2 , check by sight...)
- \Rightarrow Correlated data beginning to dominate full data compilation...
 - \rightarrow Non-trivial, energy dependent influence on both mean value and error estimate

KNT18 prescription

- Construct full covariance matrices for each channel & entire compilation
 ⇒ Framework available for inclusion of any and all inter-experimental
 correlations
- If experiment does not provide matrices...
 - \rightarrow Statistics occupy diagonal elements only
 - \rightarrow Systematics are 100% correlated
- If experiment does provide matrices...
 - \rightarrow Use all information provided
- Use correlations to full capacity

Data combination consideration

Question:

What are the main points of concern when combining experimental data to evaluate $a_{\mu}^{had, VP}$?

- \Rightarrow When combining data...
 - \rightarrow ...how to best combine large amounts of data from different experiments
 - \rightarrow ...the correct implementation of correlated uncertainties (statistical and systematic)
 - \rightarrow ...finding a solution that is free from bias

d'Agostini bias [Nucl.Instrum.Meth. A346 (1994) 306-311]

$$\begin{array}{ll} x_1 = 0.9 \pm \delta x_1 \\ x_2 = 1.1 \pm \delta x_2 \end{array} \quad C_{\text{sys}} = \begin{pmatrix} p^2 x_1^2 & p^2 x_1 x_2 \\ p^2 x_2 x_1 & p^2 x_2^2 \end{pmatrix}$$

(Normalisation uncertainties defined by data)

 $\Rightarrow \bar{x} \simeq 0.98$ (systematic bias)

Effect worsened with full, iterative data combination

Data combination consideration

Question:

What are the main points of concern when combining experimental data to evaluate $a_{\mu}^{had, VP}$?

- \Rightarrow When combining data...
 - \rightarrow ...how to best combine large amounts of data from different experiments
 - \rightarrow ...the correct implementation of correlated uncertainties (statistical and systematic)
 - \rightarrow ...finding a solution that is free from bias

Fixed matrix method [R. D. Ball et al. [NNPDF Collaboration], JHEP 1005 (2010) 075.]

$$\begin{array}{l} x_1 = 0.9 \pm \delta x_1 \\ x_2 = 1.1 \pm \delta x_2 \end{array} \quad C_{\rm sys} = \begin{pmatrix} p^2 \bar{x}^2 & p^2 \bar{x}^2 \\ p^2 \bar{x}^2 & p^2 \bar{x}^2 \end{pmatrix}$$

(Normalisation uncertainties defined by estimator)

 $\Rightarrow \bar{x} = 1.00$ (systematic bias)

Redefinition repeated at each stage of iterative data combination

Linear χ^2 minimisation $_{\rm [KNT18:\ arXiv:1802.02995,\ PRD\ (in\ press)]}$

- \Rightarrow Clusters are defined to have linear cross section
 - \rightarrow Fix covariance matrix with linear interpolants at each iteration (extrapolate at boundary)

$$\chi^{2} = \sum_{i=1}^{N_{\text{tot}}} \sum_{j=1}^{N_{\text{tot}}} \left(R_{i}^{(m)} - \mathcal{R}_{m}^{i} \right) \mathbf{C}^{-1} \left(i^{(m)}, j^{(n)} \right) \left(R_{j}^{(n)} - \mathcal{R}_{n}^{j} \right)$$

- \Rightarrow Through correlations and linearisation, result is the minimised solution of all available uncertainty information
 - \rightarrow ... through a method that has been shown to avoid d'Agostini bias
- ⇒ The flexibly of the fit to vary due to the energy dependent, correlated uncertainties benefits the combination
 - → ... and any data tensions are reflected in a local and global $\chi^2_{\rm min}/{\rm d.o.f.}$ error inflation

Alex Keshavarzi (KNT18)

$\pi^+\pi^-$ channel [KNT18: arXiv:1802.02995, PRD (in press)]

 $\Rightarrow \pi^+\pi^-$ accounts for over 70% of $a_{\mu}^{\rm had, \, LO \, VP}$

 \rightarrow Combines 30 measurements totalling 999 data points

 \Rightarrow 15% local $\chi^2_{
m min}/
m d.o.f.$ error inflation due to tensions in clustered data

$\pi^+\pi^-$ channel [KNT18: arXiv:1802.02995, PRD (in press)]

- \Rightarrow Tension exists between BaBar data and all other data in the dominant ρ region.
 - \rightarrow Agreement between other radiative return measurements and direct scan data largely compensates this.

Compared to $a_{\mu}^{\pi^{+}\pi^{-}} = 502.97 \pm 1.97$: $\Rightarrow a_{\mu}^{\pi^{+}\pi^{-}}$ (BaBar data only) = 513.2 ± 3.8 .

Simple weighted average of all data $\Rightarrow a_{\mu}^{\pi^{+}\pi^{-}}$ (Weighted average) = 509.1 ± 2.9. (i.e. - no correlations in determination of mean value)

BaBar data dominate when no correlations are taken into account for the mean value Highlights importance of fully incorporating all available correlated uncertainties

Alex Keshavarzi (KNT18)

Other notable exclusive channels [KNT18: arXiv:1802.02995, PRD (in press)]

HLMNT11: 41.40 ± 0.87 KNT18: 41.27 ± 0.62

Alex Keshavarzi (KNT18)

KNT18 $a_{\mu}^{had, VP}$ update [KNT18: arXiv:1802.02995, PRD (in press)]

0.6

Results KN

KNT18 update

Contributions below 2GeV [KNT18: arXiv:1802.02995, PRD (in press)]

Alex Keshavarzi (KNT18)

 $R(s) \, \, {\rm for} \, \, m_\pi \leq \sqrt{s} \leq 11.2 \, \, {\rm GeV}$ [KNT18: arXiv:1802.02995, PRD (in press)]

 \Rightarrow Full KNT18 compilation data set for hadronic *R*-ratio now available... \Rightarrow ...complete with full covariance matrix

Alex Keshavarzi (KNT18)

KNT18 $a_{\mu}^{\rm SM}$ update $_{\rm [KNT18:\ arXiv:1802.02995,\ PRD\ (in\ press)]}$

	<u>2011</u>			2017		
QED	11658471.81 <mark>(0.02)</mark>	\longrightarrow	11658471.90 (0.01)	[arXiv:1712.06060]	
EW	15.40 (0.20)	\longrightarrow	15.36 (0.10)	[Phys. Rev. D 88 (2013) 05300	5]
LO HLbL	10.50 (2.60)	\longrightarrow	9.80 ((2.60)	[EPJ Web Conf. 118 (2016) 01	016]
NLO HLbL			0.30 (0.20)	[Phys. Lett. B 735 (2014) 90]	
	HLMNT11		K	NT18		
LO HVP	694.91 (4.27)	\longrightarrow	693.27	(2.46)	this work	
NLO HVP	-9.84 (0.07)	\longrightarrow	-9.82	(0.04)	this work	
NNLO HVP			1.24 ((0.01)	[Phys. Lett. B 734 (2014) 144]	
Theory total	11659182.80 <mark>(4.94)</mark>	\rightarrow	11659182.05 ((3.56)	this work	
Experiment			11659209.10	(6.33)	world avg	
Exp - Theory	26.1 (8.0)	\rightarrow	27.1	(7.3)	this work	
Δa_{μ}	3.3σ	\rightarrow		3.7σ	this work	
Alex Keshavarzi (Kl	NT18) The mi	ion $g-2$:	HVP		20th June 2018	12 / 14

KNT18 $a_{\mu}^{\rm SM}$ update $_{\rm [KNT18:\ arXiv:1802.02995,\ PRD\ (in\ press)]}$

Alex Keshavarzi (KNT18)

Conclusions

- \Rightarrow Accuracy of $a_{\mu}^{\rm SM}$ limited by hadronic contributions
- ⇒ Hadronic VP contirbutions can be determined from dispersion relations and hadronic cross section
- \Rightarrow Must build hadronic *R*-ratio from experimental data
- ⇒ New data combination method + new data yields improvements in all channels due to increased fit flexibility
- ⇒ Correlations have large effect on mean value and uncertainty and all available information should be correctly incorporated
- $\Rightarrow a_{\mu}^{\rm had, LOVP}$ accuracy better than 0.4%
- \Rightarrow Improvement in HVP yields g-2 discrepancy of 3.7σ
- \Rightarrow Overall HVP uncertainty now better than HLbL uncertainty

Thank you

Extra Slides

Hadronic contributions

 \Rightarrow Uncertainty on $a_{\mu}^{\rm SM}$ dominated by hadronic contributions

 \rightarrow Non-perturbative, low energy region of hadronic resonances

 \Rightarrow LbL contributions $(\mathcal{O}(\alpha^3))$, so far only *fully* determined using model calculations

- \rightarrow Difficult to quantify/control uncertainties from models
- \rightarrow Huge progress from lattice and dispersive approaches
- \rightarrow So far, no indication of unpleasant surprises
- \rightarrow But, big improvements expected in near future Phys. Rev. D 94 (2016) 053006.
- \Rightarrow LO LbL, updated 'Glasgow consensus' estimate: $a_{\mu}^{\rm had,\,LO\,LbL} = (9.8\pm2.6)\times10^{-10}$
 - \rightarrow NLO LbL estimated to be $a_{\mu}^{\rm had,\;NLO\;LbL}=(0.3\pm0.2)\times10^{-10}_{\rm \;Phys.\;Lett.}$ B 735 (2014) 90.

$$a_{\mu}^{\text{had, LbL}} = (10.1 \pm 2.6) \times 10^{-10}$$

Alex Keshavarzi (KNT18)

$a_{\mu}^{\mathrm{had,VP}}$: theoretical setup

- \Rightarrow We want to calculate the leading order hadronic vacuum polarisation (HVP) contribution
- 1) Feynman rules for HVP insertion to photon propagator:

3) Insert to vertex correction, solve for a_{μ} : $a_{\mu}^{\text{had, LO VP}} = \frac{\alpha}{\pi^2} \int_{s_{th}}^{\infty} \frac{\mathrm{d}s}{s} \text{Im} \Pi_{\text{had}}(s) K(s)$

4) Utilise optical theorem:

2)

 $\Pi_{\alpha\beta}(q^2)$

5) Arrive at equation for $a_{\mu}^{\text{had, LO VP}}$:

$$a_{\mu}^{\text{had, LOVP}} = \frac{1}{4\pi^3} \int_{s_{th}}^{\infty} \mathrm{d}s \, \sigma_{\text{had},\gamma}^0(s) K(s)$$

 $\sigma^0_{\mathrm{had},\gamma} = \mathsf{bare\ cross\ section},\ \mathsf{FSR\ included}$

 \Rightarrow Similar dispersion integrals for NLO and NNLO HVP

Alex Keshavarzi (KNT18)

The muon g - 2: HVP

Extras

$\sigma^0_{\mathrm{had},\gamma}$: vacuum polarisation corrections

 \Rightarrow Photon VP corresponds to higher order contributions to $a_{\mu}^{\rm had,\,VP}$

 \Rightarrow Fully updated, self-consistent VP routine: [vp_knt_v3_0], available for distribution

→ Cross sections undressed with full photon propagator (must include imaginary part), $\sigma_{had}^0(s) = \sigma_{had}(s)|1 - \Pi(s)|^2$

 $\Rightarrow \text{ If correcting data, apply corresponding radiative correction uncertainty} \\ \rightarrow \text{Take } \frac{1}{3} \text{ of total correction per channel as conservative extra uncertainty}$

$\sigma^0_{\mathrm{had},\gamma}$: final state radiation corrections

 \Rightarrow Photon FSR formally higher order corrections to $a_{\mu}^{\rm had,\,VP}$

- \Rightarrow Cannot be unambiguously separated, not accounted for in HO contributions
 - \rightarrow Must be included as part of 1PI hadronic blobs
- \Rightarrow Experiment may cut/miss photon FSR \rightarrow Must be added back
- \Rightarrow For $\pi^+\pi^-$, sQED approximation [Eur. Phys. J. C 24 (2002) 51, Eur. Phys. J. C 28 (2003) 261]
- ⇒ For higher multiplicity states, difficult to estimate correction

Need new, more developed tools to increase precision here

.: Apply conservative uncertainty (e.g. - CARLOMAT 3.1 [Eur.Phys.J. C77 (2017) no.4, 254]?)

Systematic bias and use of the data/covariance matrix

- \Rightarrow Data is re-binned using an adaptive clustering algorithm
- \Rightarrow Iterative fit of covariance matrix as defined by data \rightarrow D'Agostini bias

Allows for increased fit flexibility and full use of energy dependent, correlated uncertainties

Alex Keshavarzi (KNT18)

Fixing the covariance matrix [JHEP 1005 (2010) 075, Eur.Phys.J. C75 (2015), 613]

 \Rightarrow Apply a procedure to fix the covariance matrix

$$\mathbf{C}_{I}(i^{(m)}, j^{(n)}) = \mathsf{C}^{\mathsf{stat}}(i^{(m)}, j^{(n)}) + \frac{\mathsf{C}^{\mathsf{sys}}(i^{(m)}, j^{(n)})}{R_{i}^{(m)}R_{j}^{(n)}}R_{m}R_{n} ,$$

in an iterative χ^2 minimisation method that, to our best knowledge, is free from bias

- $\Rightarrow \mathsf{Fixing with theory value regulates} \\ influence$
- \Rightarrow Can be shown from toy models to be free from bias
- \Rightarrow Swift convergence
- ⇒ Comparison with past results shows HLMNT11 estimates are largely unaffected

Allows for increased fit flexibility and full use of energy dependent, correlated uncertainties

Alex Keshavarzi (KNT18)

Properties of a covariance matrix

Any covariance matrix, C_{ij} , of dimension $n \times n$ must satisfy the following requirements:

• As the diagonal elements of any covariance matrix are populated by the corresponding variances, all the diagonal elements of the matrix are positive. Therefore, the trace of the covariance matrix must also be positive

$$\mathsf{Trace}(\mathcal{C}_{ij}) = \sum_{i=1}^{n} \sigma_{ii} = \sum_{i=1}^{n} \mathsf{Var}_{i} > 0$$

- It is a symmetric matrix, $C_{ij} = C_{ji}$, and is, therefore, equal to its transpose, $C_{ij} = C_{ij}^T$
- The covariance matrix is a positive, semi-definite matrix,

$$\mathbf{a}^T \mathcal{C} \ \mathbf{a} \ge 0 \ ; \ \mathbf{a} \in \mathbf{R}^n,$$

where $\mathbf a$ is an eigenvector of the covariance matrix $\mathcal C$

• Therefore, the corresponding eigenvalues λ_{a} of the covariance matrix must be real and positive and the distinct eigenvectors are orthogonal

$$\mathbf{b} \ \mathcal{C} \ \mathbf{a} = \lambda_{\mathbf{a}} (\mathbf{b} \cdot \mathbf{a}) = \mathbf{a} \ \mathcal{C} \ \mathbf{b} = \lambda_{\mathbf{b}} (\mathbf{a} \cdot \mathbf{b})$$
$$\therefore \text{ if } \lambda_{\mathbf{a}} \neq \lambda_{\mathbf{b}} \Rightarrow (\mathbf{a} \cdot \mathbf{b}) = 0$$

• The determinant of the covariance matrix is positive: $\mathsf{Det}(\mathcal{C}_{ij}) \geq 0$

Alex Keshavarzi (KNT18)

Clustering data

 \Rightarrow Re-bin data into *clusters*

Better representation of data combination through adaptive clustering algorithm

 \rightarrow More and more data \Rightarrow risk of over clustering

 \Rightarrow loss of information on resonance

 \rightarrow Scan cluster sizes for optimum solution (error, χ^2 , check by sight...)

 \Rightarrow Scanning/sampling by varying bin widths

 \rightarrow Clustering algorithm now adaptive to points at cluster boundaries

Correlation and covariance matrices

- \Rightarrow Correlated data beginning to dominate full data compilation...
 - \rightarrow Non-trivial, energy dependent influence on both mean value and error estimate

KNT18 prescription

- Construct full covariance matrices for each channel & entire compilation
 ⇒ Framework available for inclusion of any and all inter-experimental correlations
- If experiment does not provide matrices...
 - \rightarrow Statistics occupy diagonal elements only
 - \rightarrow Systematics are 100% correlated
- If experiment does provide matrices...
 - \rightarrow Matrices **must** satisfy properties of a covariance matrix
- e.g. KLOE $\pi^+\pi^-\gamma(\gamma)$ combination covariance matrices update
- ⇒ Originally, NOT a positive semi-definite matrix

The resulting KLOE $\pi^+\pi^-\gamma(\gamma)$ combination [JHEP 1803 (2018) 173.]

 \Rightarrow Combination of KLOE08, KLOE10 and KLOE12 gives 85 distinct bins between $0.1 \le s \le 0.95~{\rm GeV^2}$

 \rightarrow Covariance matrix now correctly constructed

 \Rightarrow a positive semi-definite matrix

 \rightarrow Non-trivial influence of correlated uncertainties on resulting mean value

$$a_{\mu}^{\pi^+\pi^-}(0.1 \le s' \le 0.95 \text{ GeV}^2) = (489.9 \pm 2.0_{\text{stat}} \pm 4.3_{\text{sys}}) \times 10^{-16}$$

 \rightarrow All previous combinations issues now eliminated...

...and consistency between measurements and combination

Alex Keshavarzi (KNT18)

The KLOE $\pi^+\pi^-\gamma(\gamma)$ combination [JHEP 1803 (2018) 173.]

Integration

- \Rightarrow Trapezoidal rule integral
 - \rightarrow Consistency with linear cluster definition
 - \rightarrow High data population \therefore Accurate estimate from linear integral

- \rightarrow Higher order polynomial integrals give (at maximum) differences of $\sim 10\%$ of error
- \Rightarrow Estimates of error non-trivial at integral borders
 - \rightarrow Extrapolate/interpolate covariance matrices

Alex Keshavarzi (KNT18)

2π without BaBar

 $\Rightarrow 2\pi$ data combination stable without BaBar data

- \rightarrow Other data saturate the effect of BaBar
- \rightarrow Differences with and without BaBar are now fairly small

2π CLEO-c data [Phys.Rev. D97 (2018) 032012]

- \Rightarrow New 2π data from CLEO-c should be used with caution
 - \rightarrow Two measurements taken at different COM energies $(\psi(3770)/\psi(4170))$ have very different cross sections
 - \rightarrow Large statistical and systematic errors compared to other radiative return sets
 - \rightarrow VP correction has been applied with FJ03VP (needs updated version) and only subtracts real part
 - \rightarrow The values for $a_{\mu}^{\pi^+\pi^-}$ given in the paper only calculated using weighted average \rightarrow Systematics will be highly correlated and should be incorporated
 - \rightarrow The authors have fitted the data to Gounaris-Sakurai parametrisation
 - \rightarrow Unreliable representation of cross section at high s
 - \rightarrow The authors find (with FJ03VP):

$$a_{\mu}^{\pi^{+}\pi^{-}}(\psi(3770)) = 489.6 \pm 4.5_{\text{stat}}, a_{\mu}^{\pi^{+}\pi^{-}}(\psi(4170)) = 503.6 \pm 5.9_{\text{stat}}$$
$$a_{\mu}^{\pi^{+}\pi^{-}}(\text{Weighted average}) = 500.4 \pm 3.6_{\text{stat}} \pm 7.5_{\text{sys}}$$
$$\rightarrow \text{I find (with KNT18VP):}$$

$$\begin{split} a_{\mu}^{\pi^{+}\pi^{-}}(\psi(3770)) &= 499.6 \pm 4.5_{\text{stat}} \pm 7.5_{\text{sys}}, \ a_{\mu}^{\pi^{+}\pi^{-}}(\psi(4170)) = 504.3 \pm 5.9_{\text{stat}} \pm 7.6_{\text{sys}} \\ a_{\mu}^{\pi^{+}\pi^{-}}(\text{Fit} - \text{w/o correlated systematics}) &= 500.9 \pm 4.0_{\text{stat}} \pm 5.9_{\text{sys}} \\ a_{\mu}^{\pi^{+}\pi^{-}}(\text{Fit} - \text{with correlated systematics}) &= 500.7 \pm 4.0_{\text{stat}} \pm 8.3_{\text{sys}} \end{split}$$

$KK\pi$, $KK\pi\pi$ and isospin

Alex Keshavarzi (KNT18)

Inclusive

 \Rightarrow New KEDR inclusive R data [Phys.Lett. B770 (2017) 174-181, Phys.Lett. B753 (2016) 533-541] and BaBar R_b data [Phys. Rev. Lett. 102 (2009) 012001.].

 \implies Choose to adopt entirely data driven estimate from threshold to 11.2 GeV

 $a_{\mu}^{\rm Inclusive} = 43.67 \pm 0.17_{\rm stat} \pm 0.48_{\rm sys} \pm 0.01_{\rm vp} \pm 0.44_{\rm fsr} = 43.67 \pm 0.67_{\rm tot}$

KEDR update of R(s) with covariance matrix

⇒ New precise KEDR update [arXiv:1805.06235] with systematic covariance matrix for all measurements provided by experiment

 \Rightarrow Observe very small changes due to including correlations (slightly closer to pQCD)

KNT18

KNT18 + new KEDR data

The muon g - 2:

Alex Keshavarzi (KNT18)

Exclusive/inclusive transition point

- \Rightarrow New KEDR data allow reconsideration of exclusive/inclusive transition point
- \rightarrow KNT18 aim to avoid use of pQCD and keep a data-driven analysis
- → Disagreement between sum of exclusive states and inclusive data/pQCD
- \rightarrow New $\pi^+\pi^-\pi^0\pi^0$ data result in reduction of the cross section
- \rightarrow Previous transition point at 2 GeV no longer the preferred choice
- \rightarrow More natural choice for this transition point at 1.937 GeV

Input	$a_{\mu}^{\text{had, LO VP}}[1.841 \le \sqrt{s} \le 2.00 \text{ GeV}] \times 10^{10}$
Exclusive sum	6.06 ± 0.17
Inclusive data	6.67 ± 0.26
pQCD	6.38 ± 0.11
Exclusive $(< 1.937 \text{ GeV}) + \text{inclusive} (> 1.937 \text{ GeV})$	6.23 ± 0.13

Alex Keshavarzi (KNT18)

The muon g - 2: HVP

20th June 2018 14 / 14

$\chi^2_{\rm min}/{\rm d.o.f}$ comparison with HLMNT11

Channel	This work (KNT18)	HLMNT11
$\pi^+\pi^-$	1.3	1.4
$\pi^+\pi^-\pi^0$	2.1	3.0
$\pi^+\pi^-\pi^+\pi^-$	1.8	1.7
$\pi^+\pi^-\pi^0\pi^0$	2.0	1.3
$(2\pi^+ 2\pi^- \pi^0)_{no \eta}$	1.0	1.2
$(2\pi^+2\pi^-2\pi^0)_{no\ \eta\omega}$	3.5	4.0
K^+K^-	2.1	1.9
$K^0_S K^0_L$	0.8	0.8

Table: Comparison of the global $\sqrt{\chi^2_{\rm min}/{\rm d.o.f}}$ for the leading and major sub-leading channels determined in the HLMNT11 analysis and in this work (KNT18). The first column indicates the final state or individual contribution, the second column gives the KNT18 value, the third column states the HLMNT11 value and the last column gives the difference between the two numbers.

KNT18 $\alpha(M_Z^2)$ update

 $\Rightarrow \alpha^{-1}(M_Z^2) = 128.946 \pm 0.015$

Comparison with HLMNT11

Channel	This work (KNT18)	HLMNT11	Difference
$\pi^+\pi^-$	502.99 ± 1.97	505.77 ± 3.09	-2.78
$\pi^{+}\pi^{-}\pi^{0}$	47.82 ± 0.89	47.51 ± 0.99	0.31
$\pi^+\pi^-\pi^+\pi^-$	15.17 ± 0.21	14.65 ± 0.47	0.52
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	19.80 ± 0.79	20.37 ± 1.26	-0.57
K^+K^-	23.05 ± 0.22	22.15 ± 0.46	0.90
$K_{S}^{0}K_{L}^{0}$	13.05 ± 0.19	13.33 ± 0.16	-0.28
Inclusive channel	41.27 ± 0.62	41.40 ± 0.87	-0.13
Total	693.27 ± 2.46	694.91 ± 4.27	-1.64

- \Rightarrow Biggest difference in 2π channel
 - \rightarrow large reduction in mean and uncertainty
- ⇒ Tensions with HLMNT11 analysis for both two-kaon channels
- \Rightarrow Overall agreement with HLMNT11
- ⇒ Notable improvement of about one third in uncertainty

Comparison with other similar works

Channel	This work (KNT18)	DHMZ17	Difference
$\pi^{+}\pi^{-}$	503.74 ± 1.96	507.14 ± 2.58	-3.40
$\pi^{+}\pi^{-}\pi^{0}$	47.70 ± 0.89	46.20 ± 1.45	1.50
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	13.99 ± 0.19	13.68 ± 0.31	0.31
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	18.15 ± 0.74	18.03 ± 0.54	0.12
$K^{+}K^{-}$	23.00 ± 0.22	22.81 ± 0.41	0.19
$K_{S}^{0}K_{L}^{0}$	13.04 ± 0.19	12.82 ± 0.24	0.22
$1.8 \le \sqrt{s} \le 3.7 \text{ GeV}$	34.54 ± 0.56 (data)	$33.45 \pm 0.65 \text{ (pQCD)}$	1.09
Total	693.3 ± 2.5	693.1 ± 3.4	0.2

 \Rightarrow Total estimates from two analyses in very good agreement

- \Rightarrow Masks much larger differences in the estimates from individual channels
- \Rightarrow Unexpected tension for 2π considering the data input likely to be similar
 - \rightarrow Points to marked differences in way data are combined
 - \rightarrow From 2π discussion: $a_{\mu}^{\pi^+\pi^-}$ (Weighted average) = 509.1 \pm 2.9
- \Rightarrow Compensated by lower estimates in other channels

→ For example, the choice to use pQCD instead of data above 1.8 GeV ⇒ FJ17: $a_{\mu \ F117}^{had, LO \ VP} = 688.07 \pm 41.4$

 \rightarrow Much lower mean value, but in agreement within errors

The muon g = 2: HVF

Comparison tables

Channel	KNT18	DHMZ17	Difference
D	ata based channe	Is $(\sqrt{s} \le 1.8 \text{ GeV})$)
$\pi^+\pi^-$	503.74 ± 1.96	506.70 ± 2.58	-2.96
$\pi^{+}\pi^{-}\pi^{0}$	47.70 ± 0.89	46.20 ± 1.45	1.50
$\pi^+\pi^-\pi^+\pi^-$	13.99 ± 0.19	13.68 ± 0.31	0.31
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	18.15 ± 0.74	18.03 ± 0.54	0.12
K^+K^-	23.00 ± 0.22	23.06 ± 0.41	-0.06
$K_S^0 K_L^0$	13.04 ± 0.19	12.82 ± 0.24	0.22
Total	693.3 ± 2.5	693.1 ± 3.4	0.2

Channel	KNT18	FJ17	Difference
Data	based channels ($0.318 \le \sqrt{s} \le 2$ G	GeV)
$\pi^+\pi^-$	501.68 ± 1.71	502.16 ± 2.44	-0.48
$\pi^{+}\pi^{-}\pi^{0}$	47.83 ± 0.89	44.32 ± 1.48	3.51
$\pi^+\pi^-\pi^+\pi^-$	15.17 ± 0.21	14.80 ± 0.36	0.37
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	19.80 ± 0.79	19.69 ± 2.32	0.11
K^+K^-	23.05 ± 0.22	21.99 ± 0.61	1.06
$K_{S}^{0}K_{L}^{0}$	13.05 ± 0.19	13.10 ± 0.41	-0.05
Total	693.27 ± 2.46	688.07 ± 4.14	5.20

Channel	KNT18	Benayoun et. al	Difference	
Data based channels ($\sqrt{s} \le 1.05$ GeV)				
$\pi^+\pi^-$	495.86 ± 1.94	489.83 ± 1.22	6.03	
$\pi^{+}\pi^{-}\pi^{0}$	44.49 ± 0.80	42.94 ± 0.52	1.55	
K^+K^-	18.12 ± 0.18	17.18 ± 0.25	0.94	
$K_{S}^{0}K_{L}^{0}$	11.97 ± 0.17	11.87 ± 0.25	0.10	

Alex Keshavarzi (KNT18)

Comparison of $\rho - \omega$ with FJ17

Alex Keshavarzi (KNT18)

Comparison of ϕ with FJ17

Alex Keshavarzi (KNT18)