Hadronic contribution to $(g-2)_{\mu}$ from e^+e^- annihilations

Michel Davier, Andreas Hoecker, <u>Bogdan Malaescu</u>, Zhiqing Zhang

LPNHE

PARIS

Content of the talk

- Data on $e^+e^- \rightarrow hadrons$
- Updated combination of all e⁺e⁻ data: focus on the combination procedure (HVPTools)
- → Updated KLOE data with correlations ($\pi\pi$)
- \rightarrow New data from CLEO ($\pi\pi$)
- **Results on a_{\mu}**

Discussion and conclusions

HVP: Low-energy data on $e^+e^- \rightarrow hadrons$

Need: $e^+e^- \rightarrow$ hadrons bare (no VP) cross section

- → in addition to the dominant $\pi\pi$ channel, need to account for KK, $\pi^0\gamma$, $\gamma\gamma$ + channels with higher multiplicities
- → need to combine measurements in each channel & sum channels
- \rightarrow Do not use hadronic τ decays data (less precise + theory uncertainties)

Combination for the $e^+e^- \rightarrow \pi^+\pi^-$ channel (2017)

arXiv: 1706.09436 (EPJ C) Davier-Hoecker-BM-Zhang

Improved procedure and software (HVPTools) for combining cross section data with arbitrary point spacing/binning

Combine Cross Section Data: goal and requirements

→ Goal: combine experimental spectra with arbitrary point spacing / binning

→ Requirements:

- Properly propagate uncertainties and correlations
- *Between measurements (data points/bins) of a given experiment* (covariance matrices and/or detailed split of uncertainties in sub-components)
- *Between experiments* (common systematic uncertainties, e.g. VP) based on detailed information provided in publications
- *Between different channels* motivated by understanding of the meaning of systematic uncertainties and identifying the common ones: BABAR luminosity (ISR or BhaBha), efficiencies (photon, Ks, Kl, modeling); BABAR radiative corrections; $4\pi 2\pi^0$ - $\eta\omega$ CMD2 $\eta\gamma - \pi^0\gamma$; CMD2/3 luminosity; SND luminosity; FSR; hadronic VP (old experiments)

• Minimize biases

• Optimize g-2 integral uncertainty (without overestimating the precision with which the uncertainties of the measurements are known)

B. Malaescu (CNRS)

– HVP g-2 workshop –

Combination procedure implemented in HVPTools software

- \rightarrow Define a (fine) final binning (to be filled and used for integrals etc.)
- → Linear/quadratic splines to interpolate between the points/bins of each experiment
 - for binned measurements: preserve integral inside each bin
- → Fluctuate data points taking into account correlations and re-do the splines for each (pseudo-)experiment
 - each uncertainty fluctuated coherently for all the points/bins that it impacts
 - eigenvector decomposition for (statistical & systematic) covariance matrices

Combination procedure implemented in HVPTools software

For each final bin:

- → Compute an average value for each measurement and its uncertainty
- → Compute correlation matrix between experiments
- → Minimize χ^2 and get average coefficients (weights)
- → Compute average between experiments and its uncertainty
- Evaluation of integrals and propagation of uncertainties:
- → Integral(s) evaluated for nominal result and for each set of toy pseudoexperiments; uncertainty of integrals from RMS of results for all toys
- → The pseudo-experiments also used to derive (statistical & systematic) covariance matrices of combined cross sections → Integral evaluation
- → Uncertainties also propagated through ±1σ shifts of each uncertainty:
 allows to account for correlations between different channels (for integrals and spectra)
- → *Checked consistency between the different approaches*

– HVP g-2 workshop –

Treatment of the KLOE data – correlation matrices

B. Malaescu (CNRS)

– HVP g-2 workshop –

June 2018

Treatment of the KLOE data – eigenvector decomposition

- → Problem of negative eigenvalues for previous systematic covariance matrix solved (informed KLOE collaboration about the problem in summer 2016)
- B. Malaescu (CNRS)

– HVP g-2 workshop –

Treatment of the KLOE data – eigenvector decomposition

- → Each normalized eigenvector $(\sigma_i^*V_i)$ treated as an uncertainty fully correlated between the bins
- → All these uncertainties are independent between each-other

$$C = \sum_{i=1}^{N_{bins}} \sigma_i^2 \cdot C(V_i)$$

- → Checked exact matching with the original matrices + with all a_u integrals and uncertainties published by KLOE
- 40 Uncertainty 30 20 10 0 -10 Systematic cov. mat -20 -30 eigenvectors -40^L 180 KLOE: 08 n bin 40 Jncertainty 30 20 10 0 -10 Total cov. mat. -20 KLOE combined -30 20 80

June 2018

n bin

B. Malaescu (CNRS)

– HVP g-2 workshop –

Treatment of the KLOE data – eigenvector decomposition

- → Eigenvectors carry the general features of the correlations:
 - long-range for systematics
 - ~short-range for statistical uncertainties + correlations between KLOE 08 & 12

Combination procedure: weights of various measurements

For each final bin:

 \rightarrow Minimize χ^2 and get average coefficients

<u>Note</u>: average weights must account for bin sizes / point spacing of measurements (do not over-estimate the weight of experiments with large bins) \rightarrow weights in fine bins evaluated using a common (large) binning for measurements + interpolation \rightarrow compare the precisions on the same footing

Combination procedure: compatibility between measurements

For each final bin:

- $\rightarrow \chi^2$ /ndof: test locally the level of agreement between input measurements, *taking into account the correlations*
- → Conservatively scale uncertainties in bins where χ^2 /ndof > 1 (PDG)
- → Observed tension between BABAR and KLOE measurements

→ Also motivates conservative uncertainty treatment in evaluation of weights

B. Malaescu (CNRS)

– HVP g-2 workshop –

Combination for the $e^+e^- \rightarrow \pi^+\pi^-$ channel

Combination for the $e^+e^- \rightarrow \pi^+\pi^-$ channel

B. Malaescu (CNRS)

– HVP g-2 workshop –

Combination for the $e^+e^- \rightarrow \pi^+\pi^-$ channel

$a_{\mu}^{\pi\pi}$ contribution [0.28; 1.8] GeV

- \rightarrow Closure test of the combination method:
 - replace all central values of the measured cross sections by predictions from of a Gounaris-Sakurai model (keeping uncertainties unchanged)
 - perform combination and integration procedure
 - compare integration result with expectation from integral of the model
- → Bias ~ $0.1 \cdot 10^{-10}$ when using linear interpolation
- \rightarrow Negligible bias for quadratic interpolation
- \rightarrow Updated result:

 506.70 ± 2.32 (± 1.01 (stat.) ± 2.08 (syst.)) [10⁻¹⁰]

(after uncertainty enhancement by 14% caused by the tension between inputs)

Total uncertainty: 5.9 (2003) → 2.8 (2011) → 2.6 (2017) → 2.3 (2018)

$a_{\mu}^{\pi\pi}$ contribution [0.28; 1.8] GeV

→ with KLOE-08-10-12 (KLOE-KT) used as input: $506.55 \pm 2.38 [10^{-10}]$ (after uncertainty enhancement by 18% caused by the tension between inputs)

→ Compensation between uncertainty reduction for KLOE-08-10-12 (KLOE-KT), inducing a change of weights in DHMZ combination, and tension enhancement

$R_{e^+e^-} \rightarrow Hadrons$

- → Full propagation of uncertainties and correlations
- → Performed non-trivial check:
 - a_{μ} from sum of individual channels

and from Ree integral < 1.8 GeV

B. Malaescu (CNRS)

Conclusion

- \rightarrow Long standing discrepancy between data and SM on a_{μ} : 3.6 σ in this update
- → The evaluation of the HVP contribution to a_{μ}^{SM} is a continuous effort, following the release of new experimental data: $692.9 \pm 3.2 [10^{-10}]$
- \rightarrow Precision on $a_{\mu}^{Had,LO}$ improved by more than a factor 2 in the last 14 years
- → Need split of KLOE systematic uncertainties (as in the original publications)
- \rightarrow Looking forward to the improved experimental result

Backup Slides

Hadronic Vacuum Polarization and Muon $(g-2)_{\mu}$

Dominant uncertainty for the theoretical prediction: from lowest-order HVP piece Cannot be calculated from QCD (low mass scale), but one can use experimental data on $e^+e^- \rightarrow$ hadrons cross section

γ

U

Born: $\sigma^{(0)}(s) = \sigma(s)(\alpha / \alpha(s))^2$

→ Precise $\sigma(e^+e^-\rightarrow hadrons)$ measurements at low energy are very important

a_u contributions and sum (1706.09436, EPJC)

C11	had.LO 110-101		-	
Channel	$a_{\mu}^{(1)} = [10^{-10}]$	-	J/ψ (BW integral)	6.28 ± 0.07
$\pi^0 \gamma$	$4.29 \pm 0.06 \pm 0.04 \pm 0.07$		$\psi(2S)$ (BW integral)	1.57 ± 0.03
$\eta\gamma$	$0.65\pm 0.02\pm 0.01\pm 0.01$		B_{1-1} [3.7–5.0 GeV]	$7.29 \pm 0.05 \pm 0.30 \pm 0.00$
$\pi^{+}\pi^{-}$	$507.14 \pm 1.13 \pm 2.20 \pm 0.75$] Updated	Indata [011 010 001]	1.25 ± 0.05 ± 0.05 ± 0.05
$\pi^+\pi^-\pi^0$	$46.20 \pm 0.40 \pm 1.10 \pm 0.86$		R_{QCD} [1.8–3.7 GeV] _{uds}	$33.45 \pm 0.28 \pm 0.59_{\rm dual}$
$2\pi^+2\pi^-$	$13.68 \pm 0.03 \pm 0.27 \pm 0.14$		R_{QCD} [5.0–9.3 GeV] _{udsc}	6.86 ± 0.04
$\pi^{+}\pi^{-}2\pi^{0}$	$18.03 \pm 0.06 \pm 0.48 \pm 0.26$		R_{QCD} [9.3–12.0 GeV] _{udscb}	1.21 ± 0.01
$2\pi^+ 2\pi^- \pi^0$ (η excl.)	$0.69 \pm 0.04 \pm 0.06 \pm 0.03$		$R_{\rm QCD}$ [12.0–40.0 GeV] _{udscb}	1.64 ± 0.00
$\pi^+\pi^-3\pi^0$ (η excl., isospin)	$0.35 \pm 0.02 \pm 0.03 \pm 0.01$		R_{QCD} [> 40.0 GeV] _{udscb}	0.16 ± 0.00
$3\pi^{+}3\pi^{-}$	$0.11 \pm 0.00 \pm 0.01 \pm 0.00$		$R_{\rm QCD} \ [> 40.0 \ {\rm GeV}]_t$	0.00 ± 0.00
$2\pi^+ 2\pi^- 2\pi^0$ (η excl.)	$0.72\pm 0.06\pm 0.07\pm 0.14$		Sum	$6931 \pm 12 \pm 26 \pm 17 \pm 014 \pm 070$
$\pi^+\pi^-4\pi^0$ (η excl., isospin)	$0.11 \pm 0.01 \pm 0.11 \pm 0.00$		Jum	000.1 ± 1.2 ± 2.0 ± 1.1 ± 0.1% ± 0.1QCD
$\eta \pi^+ \pi^-$	$1.18 \pm 0.03 \pm 0.06 \pm 0.02$			
$\eta\omega$	$0.32\pm 0.02\pm 0.02\pm 0.01$			
$\eta \pi^+ \pi^- \pi^0 \pmod{\omega, \phi}$	$0.39 \pm 0.03 \pm 0.11 \pm 0.03$			
$\eta 2\pi^{+}2\pi^{-}$	$0.03 \pm 0.01 \pm 0.00 \pm 0.00$			
$\eta \pi^{+} \pi^{-} 2 \pi^{0}$	$0.03 \pm 0.01 \pm 0.01 \pm 0.00$			
$\omega \pi^0 \ (\omega \to \pi^0 \gamma)$	$0.94 \pm 0.01 \pm 0.02 \pm 0.02$			
$\omega(\pi\pi)^0 \ (\omega \to \pi^0 \gamma)$	$0.08\pm 0.00\pm 0.01\pm 0.00$			
$\omega (\text{non-}3\pi, \pi\gamma, \eta\gamma)$	$0.36 \pm 0.00 \pm 0.01 \pm 0.00$			
$K^{+}K^{-}$	$22.81 \pm 0.24 \pm 0.28 \pm 0.17$] Updated		
$K_S K_L$	$12.82\pm0.06\pm0.18\pm0.15$	-		
$\phi (\text{non-}K\overline{K}, 3\pi, \pi\gamma, \eta\gamma)$	$0.05\pm 0.00\pm 0.00\pm 0.00$			
$K\overline{K}\pi$	$2.45 \pm 0.06 \pm 0.12 \pm 0.07$		\rightarrow Included	39 channels
$K\overline{K}2\pi$	$0.85 \pm 0.02 \pm 0.05 \pm 0.01$		meruueu	bb chumers
$K\overline{K}3\pi$ (estimate)	$-0.03\pm0.01\pm0.02\pm0.00$		(22 in 20	10 undate)
$\eta\phi$	$0.36 \pm 0.02 \pm 0.02 \pm 0.01$			ro apaace)
$\eta K\overline{K}$ (non- ϕ)	$0.01\pm 0.01\pm 0.01\pm 0.00$			
$\omega K\overline{K} \ (\omega \to \pi^0 \gamma)$	$0.01\pm 0.00\pm 0.00\pm 0.00$		\rightarrow Precisior	n improved by 21%
$\omega \eta \pi^0$	$0.06 \pm 0.04 \pm 0.00 \pm 0.00$			Γ

 \rightarrow Only 0.10 ± 0.03% in missing (estimated) channels

Situation in arXiv:1010.4180 (EPJC)

Channel	$a_{\mu}^{\rm had, LO} \ [10^{-10}]$	$\Delta \alpha_{\rm had} (M_Z^2) \ [10^{-4}]$
$\pi^0\gamma$	$4.42\pm 0.08\pm 0.13\pm 0.12$	$0.36\pm 0.01\pm 0.01\pm 0.01$
$\eta\gamma$	$0.64 \pm 0.02 \pm 0.01 \pm 0.01$	$0.08\pm 0.00\pm 0.00\pm 0.00$
$\pi^{+}\pi^{-}$	$507.80 \pm 1.22 \pm 2.50 \pm 0.56$	$34.43 \pm 0.07 \pm 0.17 \pm 0.04$
$\pi^{+}\pi^{-}\pi^{0}$	$46.00 \pm 0.42 \pm 1.03 \pm 0.98$	$4.58\pm 0.04\pm 0.11\pm 0.09$
$2\pi^{+}2\pi^{-}$	$13.35 \pm 0.10 \pm 0.43 \pm 0.29$	$3.49 \pm 0.03 \pm 0.12 \pm 0.08$
$\pi^+\pi^-2\pi^0$	$18.01 \pm 0.14 \pm 1.17 \pm 0.40$	$4.43 \pm 0.03 \pm 0.29 \pm 0.10$
$2\pi^+ 2\pi^- \pi^0 \ (\eta \text{ excl.})$	$0.72\pm 0.04\pm 0.07\pm 0.03$	$0.22\pm 0.01\pm 0.02\pm 0.01$
$\pi^+\pi^-3\pi^0$ (η excl., from isospin)	$0.36 \pm 0.02 \pm 0.03 \pm 0.01$	$0.11\pm 0.01\pm 0.01\pm 0.00$
$3\pi^{+}3\pi^{-}$	$0.12\pm 0.01\pm 0.01\pm 0.00$	$0.04\pm 0.00\pm 0.00\pm 0.00$
$2\pi^+ 2\pi^- 2\pi^0 \ (\eta \text{ excl.})$	$0.70 \pm 0.05 \pm 0.04 \pm 0.09$	$0.25\pm 0.02\pm 0.02\pm 0.03$
$\pi^+\pi^-4\pi^0$ (η excl., from isospin)	$0.11\pm 0.01\pm 0.11\pm 0.00$	$0.04\pm 0.00\pm 0.04\pm 0.00$
$\eta \pi^+ \pi^-$	$1.15\pm 0.06\pm 0.08\pm 0.03$	$0.33 \pm 0.02 \pm 0.02 \pm 0.01$
$\eta\omega$	$0.47\pm 0.04\pm 0.00\pm 0.05$	$0.15\pm 0.01\pm 0.00\pm 0.02$
$\eta 2\pi^+ 2\pi^-$	$0.02\pm 0.01\pm 0.00\pm 0.00$	$0.01\pm 0.00\pm 0.00\pm 0.00$
$\eta \pi^+ \pi^- 2\pi^0$ (estimated)	$0.02\pm 0.01\pm 0.01\pm 0.00$	$0.01\pm 0.00\pm 0.00\pm 0.00$
$\omega \pi^0 \ (\omega \to \pi^0 \gamma)$	$0.89 \pm 0.02 \pm 0.06 \pm 0.02$	$0.18\pm 0.00\pm 0.02\pm 0.00$
$\omega \pi^+ \pi^-, \omega 2 \pi^0 \ (\omega \to \pi^0 \gamma)$	$0.08\pm 0.00\pm 0.01\pm 0.00$	$0.03\pm 0.00\pm 0.00\pm 0.00$
$\omega (\text{non-}3\pi, \pi\gamma, \eta\gamma)$	$0.36 \pm 0.00 \pm 0.01 \pm 0.00$	$0.03\pm 0.00\pm 0.00\pm 0.00$
K^+K^-	$21.63 \pm 0.27 \pm 0.58 \pm 0.36$	$3.13\pm 0.04\pm 0.08\pm 0.05$
$K^0_S K^0_L$	$12.96 \pm 0.18 \pm 0.25 \pm 0.24$	$1.75\pm0.02\pm0.03\pm0.03$
$\phi \text{ (non-}K\overline{K}, 3\pi, \pi\gamma, \eta\gamma)$	$0.05\pm 0.00\pm 0.00\pm 0.00$	$0.01\pm 0.00\pm 0.00\pm 0.00$
$K\overline{K}\pi$ (partly from isospin)	$2.39 \pm 0.07 \pm 0.12 \pm 0.08$	$0.76 \pm 0.02 \pm 0.04 \pm 0.02$
$K\overline{K}2\pi$ (partly from isospin)	$1.35 \pm 0.09 \pm 0.38 \pm 0.03$	$0.48 \pm 0.03 \pm 0.14 \pm 0.01$
$K\overline{K}3\pi$ (partly from isospin)	$-0.03\pm0.01\pm0.02\pm0.00$	$-0.01\pm0.00\pm0.01\pm0.00$
$\phi\eta$	$0.36 \pm 0.02 \pm 0.02 \pm 0.01$	$0.13 \pm 0.01 \pm 0.01 \pm 0.00$
$\omega K \overline{K} \ (\omega \to \pi^0 \gamma)$	$0.00\pm 0.00\pm 0.00\pm 0.00$	$0.00\pm 0.00\pm 0.00\pm 0.00$
J/ψ (Breit-Wigner integral)	6.22 ± 0.16	7.03 ± 0.18
$\psi(2S)$ (Breit-Wigner integral)	1.57 ± 0.03	2.50 ± 0.04
$R_{\rm data}$ [3.7 – 5.0 GeV]	$7.29 \pm 0.05 \pm 0.30 \pm 0.00$	$15.79\pm0.12\pm0.66\pm0.00$
$R_{\rm QCD} \ [1.8 - 3.7 \text{ GeV}]_{uds}$	33.45 ± 0.28	24.27 ± 0.19
$R_{\rm QCD} \ [5.0 - 9.3 \text{ GeV}]_{udsc}$	6.86 ± 0.04	34.89 ± 0.18
$R_{\rm QCD} \ [9.3 - 12.0 \ {\rm GeV}]_{udscb}$	1.21 ± 0.01	15.56 ± 0.04
$R_{\rm QCD} \ [12.0 - 40.0 \ {\rm GeV}]_{udscb}$	1.64 ± 0.01	77.94 ± 0.12
$R_{\text{QCD}} [> 40.0 \text{ GeV}]_{udscb}$	0.16 ± 0.00	42.70 ± 0.06
$R_{\rm QCD}$ [> 40.0 GeV] _t	0.00 ± 0.00	-0.72 ± 0.01
Sum	$692.3 \pm 1.4 \pm 3.1 \pm 2.4 \pm 0.2_{\psi} \pm 0.3_{\rm QCD}$	$274.97 \pm 0.17 \pm 0.78 \pm 0.37 \pm 0.18_{\psi} \pm 0.52_{\rm QCD}$

Lepton Magnetic Anomaly: from Dirac to QED

$$\vec{\mu} = g \frac{e}{2m} \vec{s}, \qquad \qquad a = (g-2)/2$$

Dirac (1928) $g_e=2 a_e=0$

anomaly discovered: Kusch-Foley (1948) $a_e = (1.19 \pm 0.05) 10^{-3}$

and explained by O(α) QED contribution: Schwinger (1948) $a_e = \alpha/2\pi = 1.16 \ 10^{-3}$

first triumph of QED

 \Rightarrow a_e sensitive to quantum fluctuations of fields

More Quantum Fluctuations

HVP: Data on $e^+e^- \rightarrow hadrons$

BaBar results (arXiv:0908.3589, PRL 103, 231801 (2009); arXiv:1205.2228)

Combining the 3 KLOE measurements

Combining the 3 KLOE measurements - $a_{\mu}^{\pi\pi}$ contribution

KLOE08 a_u[0.6 ; 0.9] : 368.3 ± 3.2 [10⁻¹⁰]

KLOE10 a_u[0.6 ; 0.9] : 365.6 ± 3.3

KLOE12 a_u [0.6 ; 0.9] : 366.8 ± 2.5

 \rightarrow Correlation matrix:

| 08 | 10 | 12 |

08	1	0.70	0.35
10	0.70	1	0.19
12	0.35	0.19	1

 \rightarrow Amount of independent information provided by each measurement

→ KLOE-08-10-12(DHMZ) - $a_{\mu}[0.6; 0.9]: 366.5 \pm 2.8$ (Without χ^2 rescaling: ± 2.2)

 \rightarrow Conservative treatment of uncertainties and correlations (not perfectly known) in weight determination

 \rightarrow KLOE-08-10-12(KLOE-KT) - $a_{\mu}[0.6; 0.9]$ GeV : 366.9 ± 2.2

→ Assuming perfect knowledge of the correlations to minimize average uncertainty

 \rightarrow Impact of the scaling factor?

Direct comparison of the 3 KLOE measurements

- → Local χ^2 /ndof test of the local compatibility between KLOE 08 & 10 & 12, taking into account the correlations: some tensions observed
- → Does not probe general trends of the difference between the measurements (e.g. slopes in the ratio)

Combination for the $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ channel

Combination for the $e^+e^- \rightarrow K^+K^-$ channel

Combination for the $e^+e^- \rightarrow K^+K^-$, K_sK_l channels

 $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-$, $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$

→ Essentially normalization differences w.r.t. τ data: cross-checks very desirable

Combination for the $e^+e^- \rightarrow KK\pi$ and $KK2\pi$ channels

Contributions from the 1.8 – 3.7 GeV region

- → Contribution evaluated from pQCD (4 loops) + O(α_s^2) quark mass corrections
- \rightarrow Uncertainties: α_s , truncation of perturbative series, CIPT/FOPT, m_a
- → 1.8-2.0 GeV: 7.71±0.37(data); 8.30±0.09(QCD); added syst. 0.59 [10⁻¹⁰]
- \rightarrow 2.0-3.7 GeV: 25.82±0.61(data); 25.15 ± 0.19(QCD); agreement within 1 σ

Contributions from the charm resonance region

Status of a_{μ} - 2017 update

• Including latest results on $e+e- \rightarrow$ hadrons in the combination + latest QED calculation (Kinoshita et al.) yields

 $a_{\mu}^{SM}[e+e-] = (11\ 659\ 182.3\ \pm 3.4\ \pm 2.6\ \pm 0.2)\ 10^{-10}$

- E-821 updated result
- Deviation (26.8 \pm 7.6) 10⁻¹⁰ (3.5 σ)

Improving a_{μ} through fits for the e⁺e⁻ $\rightarrow \pi^{+}\pi^{-}$ channel

→ Fit using form-factor model based on *analyticity* and *unitarity* F(s)=R(s) * J(s)

$$R(s) = 1 + \alpha_V s + \frac{\kappa_1 s}{m_{\omega}^2 - s - im_{\omega} \Gamma_{\omega}^{\text{tot}}}$$
(1611.09359, C. Hanhart et al.)

$$J(s) = e^{1 - \delta_1^1(t_0)/\pi} \left(1 - \frac{s}{t_0}\right)^{[1 - \delta_1^1(t_0)/\pi]t_0/s} \left(1 - \frac{s}{t_0}\right)^{-1} \exp\left\{\frac{s}{\pi} \int_{4m_{\pi}^2}^{t_0} dt \frac{\delta_1^1(t)}{t(t-s)}\right\}$$
(hep-ph/0402285, F.J. Yndurain et al.)
Omnès integral

$$\cot \delta_1(s) = \frac{s^{1/2}}{2k^3} (M_\rho^2 - s) \left\{ \frac{2M_\pi^3}{M_\rho^2 \sqrt{s}} + B_0 + B_1 w(s) \right\}_{(1102.2183, \text{ F.J. Yndurain et al.})} w(s) = \frac{\sqrt{s} - \sqrt{s_0 - s}}{\sqrt{s} + \sqrt{s_0 - s}}, \quad s_0^{1/2} = 1.05 \,\text{GeV} \,,$$

→ Fit with 8 parameters on BABAR data, with full uncertainty propagation

BABAR dataFit $a_{\mu}[0.3-0.6]$ GeV:111.00 ± 1.35109.78 ± 0.78[10^{-10}] $a_{\mu}[0.6-0.9]$ GeV:376.71 ± 2.72376.68 ± 2.71 $a_{\mu}[0.3-1]$ GeV:503.56 ± 3.76502.31 ± 3.41

a_{μ} constraint through fits for the e⁺e⁻ $\rightarrow \pi^{+}\pi^{-}$ channel

