The pion transition form factor from lattice QCD

Antoine Gérardin

Institut für Kernphysik, Johannes Gutenberg-Universität Mainz

In collaboration with Harvey Meyer and Andreas Nyffeler

1

June 18, 2018 - g-2 Workshop - Mainz

Introduction	Lattice calculation	Results	Conclusion
Motivations			
 Interaction betwee Tests of the dyna → Chiral anoma 	een a neutral pion and two off-shell photons amics of QCD ly	$\xrightarrow{\pi^0}$	γ^* γ^* γ^*
ightarrow Singly-virtual $ ightarrow$ Doubly-virtua	: Brodsky-Lepage behaviour, pion distribution I : test of the operator product expansion (OF	amplitude PE)	

• Pion-pole contribution to the hadronic light-by-light scattering contribution to the $(g-2)_{\mu}$

 \rightarrow dominant contribution in model calculations

2

 \rightarrow input to the dispersive approach [Colangelo et al. '14, '15] [Pauk, Vanderhaeghen, '15, '16]

- ✤ most results were based on model calculations
- ★ new results based on a dispersive analysis [Talk by Bai Long Hoid tomorrow]

- $\bullet\,$ The signal deteriorates at large values of |y| where the pion-pole is expected to be dominant
- The pion-pole contribution could lead to large finite-size effects in the lattice calculation

[See H. Meyer Talk]

\rightarrow Use the lattice results for the TFF to estimate the tail of the integrand

 \rightarrow Product of one single-virtual and one double-virtual transition form factors (spacelike virtualities) $\rightarrow w_{1,2}(Q_1, Q_2, \tau)$ are model-independent weight functions

 \rightarrow The weight functions are concentrated at small momenta below 1 GeV (here for $\tau = -0.5$)

 \hookrightarrow Need the pion TFF for arbitrary spacelike virtualities in the momentum range [0-3] GeV²

- The single-virtual transition form factor has been measured (CELLO, CLEO, BaBar, Belle)
 - \rightarrow Belle data agree with Brodsky-Lepage ($\sim 1/Q^2)$
 - \rightarrow Belle and Babar results are quite different
 - \rightarrow No measurement for Q < 0.8 GeV yet (dominant contribution)
 - \rightarrow But new results soon by BESIII [Talk by C. Redmer]
- No result yet for the double-virtual transition form factor
 → very challenging (small cross section)
- Short-distance constraints

Antoine Gérardin

$$\mathcal{F}_{\pi^0\gamma^*\gamma}(-Q^2,0) \xrightarrow[Q^2 \to \infty]{} \frac{2F_{\pi}}{Q^2}$$

Brodsky-Lepage behavior

5

The pion transition form factor from lattice QCD

Lattice calculation

ln'	tr	\sim	d	114	\sim	E L	$\sim r$	
	LI	U	u	u		LI	UI.	

Lattice calculation

Result

Lattice calculation

In Minkowski space-time :

$$\epsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta} \mathcal{F}_{\pi^0\gamma\gamma}(q_1^2, q_2^2) = i \int \mathrm{d}^4 x \, e^{iq_1 x} \, \langle 0|T\{J_{\mu}(x)J_{\nu}(0)\}|\pi^0(p)\rangle = M_{\mu\nu}(q_1^2, q_2^2)$$

• $J_{\mu}(x)$ hadronic component of the electromagnetic current : $J_{\mu}(x) = \frac{2}{3}\overline{u}(x)\gamma_{\mu}u(x) - \frac{1}{3}\overline{d}(x)\gamma_{\mu}d(x) + \dots$

In Euclidean space-time : [Ji & Jung '01] [Cohen et al. '08] [Feng et al. '12]

$$M^{E}_{\mu\nu}(q_{1}^{2},q_{2}^{2}) = -\int \mathrm{d}\tau \, e^{\omega_{1}\tau} \int \mathrm{d}^{3}z \, e^{-i\vec{q}_{1}\vec{z}} \, \langle 0|T\left\{J_{\mu}(\vec{z},\tau)J_{\nu}(\vec{0},0)\right\} |\pi(p)\rangle$$

• Analytical continuation : $q_1 = (\omega_1, \vec{q_1})$

7

• We must kept $q_{1,2}^2 < M_V^2 = \min(M_{\rho}^2, 4m_{\pi}^2)$ to avoid poles

The main object to compute is the Euclidean three-point correlation function :

$$C^{(3)}_{\mu\nu}(\tau, t_{\pi}; \vec{p}, \vec{q}_1, \vec{q}_2) = \sum_{\vec{x}, \vec{z}} \left\langle T \left\{ J_{\nu}(\vec{0}, t_f) J_{\mu}(\vec{z}, t_i) P(\vec{x}, t_0) \right\} \right\rangle e^{i\vec{p}\vec{x}} e^{-i\vec{q}_1\vec{z}}$$

Shape of the integrand $(a = 0.064 \text{ fm and } m_{\pi} = 270 \text{ MeV})$

 $|\tau| \le \tau_{\max} \ne \infty$

- Signal deteriorates at large $|\tau|$: $e^{\omega_1 \tau}$

Introduction Lattice calculation Results Conclusion Shape of the integrand (a = 0.064 fm and $m_{\pi} = 270 \text{ MeV}$)

• The vector meson dominance (VMD) model is expected to give a good description of the data at large au

$$\mathcal{F}^{\text{VMD}}_{\pi^0\gamma^*\gamma^*}(q_1^2, q_2^2) = \frac{\alpha M_V^4}{(M_V^2 - q_1^2)(M_V^2 - q_2^2)} \quad \to \quad \widetilde{A}(\tau) = \dots \quad \text{(known analytical expression)}$$

• Fit the data at large τ and use the result of the fit for $\tau > \tau_c \gtrsim 1.3~{\rm fm}$

• Check the dependance on the model using LMD rather than VMD :

$$\mathcal{F}_{\pi^0\gamma^*\gamma^*}^{\text{LMD}}(q_1^2, q_2^2) = \frac{\alpha M_V^4 + \beta (q_1^2 + q_2^2)}{(M_V^2 - q_1^2)(M_V^2 - q_2^2)}$$

• The difference between the two models is included in the systematic error.

Introduction	Lattice calculation	Results	Conclusion

CLS ensembles

Results

- $N_f = 2 + 1$: dynamical strange quark
- Ensembles with different volumes
 → dedicated study of finite-size effects

Chiral & continuum extrapolations under control
 → we plan to include a physical pion mass lattice

- Add full $\mathcal{O}(a)$ -improvement of the vector current :
 - \hookrightarrow Continuum extrapolation $\propto a^2$

11

 \hookrightarrow Two discretizations of the vector current are used : combined continuum extrapolation

$$J^{l}_{\mu}(x) = \overline{\psi}(x)\gamma_{\mu}\psi(x)$$

$$J^{c}_{\mu}(x) = \frac{1}{2a}\left(\overline{\psi}(x+a\hat{\mu})(1+\gamma_{\mu})U^{\dagger}_{\mu}(x)\psi(x) - \overline{\psi}(x)(1-\gamma_{\mu})U_{\mu}(x)\psi(x+a\hat{\mu})\right)$$

Introduction	Lattice calculation	Results	Conclusion
Kinematical reach	: add a new moving frame		

Finite volume : discrete spatial momenta $\vec{q} = 2\pi/L\vec{n}$ ($L = \text{size of the box}, q_1 = (\omega_1, \vec{q_1})$)

$$q_1^2 = \omega_1^2 - |\vec{q_1}|^2$$

$$q_2^2 = (E_\pi - \omega_1)^2 - |\vec{q_2}|^2$$

Introduction	Lattice calculation	Results	Conclusion
Kinematical reach :	add a new moving frame		

Finite volume : discrete spatial momenta $\vec{q} = 2\pi/L\vec{n}$ ($L = \text{size of the box}, q_1 = (\omega_1, \vec{q_1})$)

$$q_1^2 = \omega_1^2 - |\vec{q_1}|^2$$

$$q_2^2 = (E_\pi - \omega_1)^2 - |\vec{q_2}|^2$$

Pion rest frame $(\vec{p} = \vec{0})$

12

 \hookrightarrow difficult to reach large Q^2 for $\mathcal{F}_{\pi^0\gamma^*\gamma}(-Q^2,0)$

 \hookrightarrow add a new frame with $\vec{p} \neq \vec{0}$ (pion momentum)

$$q_1^2 = \omega_1^2 - |\vec{q_1}|^2$$
$$q_2^2 = (E_\pi - \omega_1)^2 - |\vec{q_2}|^2$$

• We have computed all spatial momenta $\vec{q_1} = (q_{1,x}, q_{1,y}, q_{1,z})$ to cover the plane $0 < Q_1^2, Q_2^2 < 3 \text{ GeV}^2$

 \hookrightarrow important to reduce statistical noise (multiplicity)

- improved statistical precision compared to our published results with $N_f = 2$
- new data points with $\vec{p} \neq \vec{0}$ are valuable

13

- data with $\vec{p} = \vec{0}$ and $\vec{p} \neq \vec{0}$ are in very good agreement

Introduction	Lattice calculation	Results	Conclusion
Systematic uncertainties			
• Finite-volume corrections (a	$= 0.065$ fm and $m_\pi = 340$ MeV)		

 \rightarrow corresponds to our smaller volume : FSE negligible at our level of precision

• Hypercubic artifacts :

14

rotational symmetry is broken on the lattice

$$ightarrow$$
 e.g. : $ec{q_1}=(3,0,0)$ and $ec{q_1}=(2,2,1)$: same $|q_1|^2$

might be affected by different discretization effects

 \hookrightarrow compatible results within error bars \hookrightarrow average over all points with same ($|q_1|^2, |q_2|^2$)

Extrapolation to the physical point

- 1) Comparison with phenomenological models :
 - VMD and LMD models (Lowest Meson Dominance) [Moussallam '94] [Knecht et al. '99]

$$\mathcal{F}_{\pi^0\gamma^*\gamma^*}^{\text{LMD}}(q_1^2, q_2^2) = \frac{\alpha M_V^4 + \beta (q_1^2 + q_2^2)}{(M_V^2 - q_1^2)(M_V^2 - q_2^2)}$$

- LMD+V model [Knecht & Nyffeler '01]

$$\mathcal{F}_{\pi^0\gamma^*\gamma^*}^{\mathrm{LMD+V}}(q_1^2, q_2^2) = \frac{\widetilde{h}_0 \, q_1^2 q_2^2 (q_1^2 + q_2^2) + \widetilde{h}_2 \, q_1^2 q_2^2 + \widetilde{h}_5 \, M_{V_1}^2 M_{V_2}^2 \, (q_1^2 + q_2^2) + \alpha \, M_{V_1}^4 M_{V_2}^4}{(M_{V_1}^2 - q_1^2)(M_{V_2}^2 - q_1^2)(M_{V_1}^2 - q_2^2)(M_{V_2}^2 - q_2^2)}$$

ightarrow Ansatz for the fit parameters : $ilde{p}(a,m_\pi)=p+\gamma_1\,a^2+\gamma_2\,m_\pi^2$

Extrapolation to the physical point

- 1) Comparison with phenomenological models :
 - VMD and LMD models (Lowest Meson Dominance) [Moussallam '94] [Knecht et al. '99]

$$\mathcal{F}_{\pi^0\gamma^*\gamma^*}^{\text{LMD}}(q_1^2, q_2^2) = \frac{\alpha M_V^4 + \beta (q_1^2 + q_2^2)}{(M_V^2 - q_1^2)(M_V^2 - q_2^2)}$$

- LMD+V model [Knecht & Nyffeler '01]

$$\mathcal{F}_{\pi^0\gamma^*\gamma^*}^{\mathrm{LMD+V}}(q_1^2, q_2^2) = \frac{\widetilde{h}_0 \, q_1^2 q_2^2 (q_1^2 + q_2^2) + \widetilde{h}_2 \, q_1^2 q_2^2 + \widetilde{h}_5 \, M_{V_1}^2 M_{V_2}^2 \, (q_1^2 + q_2^2) + \alpha \, M_{V_1}^4 M_{V_2}^4}{(M_{V_1}^2 - q_1^2)(M_{V_2}^2 - q_1^2)(M_{V_1}^2 - q_2^2)(M_{V_2}^2 - q_2^2)}$$

ightarrow Ansatz for the fit parameters : $ilde{p}(a,m_\pi)=p+\gamma_1\,a^2+\gamma_2\,m_\pi^2$

2) Canterbury approximants (generalization of Pade approximants) [see P. Sanchez-Puertas talk]
 → disadvantage : many fit parameters

$$C_2^1(Q_1^2, Q_2^2) = \frac{a_{00} + a_{01}(Q_1^2 + Q_2^2) + a_{11}Q_1^2Q_2^2}{1 + b_{01}(Q_1^2 + Q_2^2) + b_{11}Q_1^2Q_2^2 + b_{20}(Q_1^4 + Q_2^4) + b_{21}Q_1^2Q_2^2(Q_1^2 + Q_2^2) + b_{22}Q_1^4Q_2^4}$$

Extrapolation to the physical point

- 1) Comparison with phenomenological models :
 - VMD and LMD models (Lowest Meson Dominance) [Moussallam '94] [Knecht et al. '99]

$$\mathcal{F}_{\pi^0\gamma^*\gamma^*}^{\text{LMD}}(q_1^2, q_2^2) = \frac{\alpha M_V^4 + \beta (q_1^2 + q_2^2)}{(M_V^2 - q_1^2)(M_V^2 - q_2^2)}$$

- LMD+V model [Knecht & Nyffeler '01]

$$\mathcal{F}_{\pi^0\gamma^*\gamma^*}^{\text{LMD+V}}(q_1^2, q_2^2) = \frac{\widetilde{h}_0 \, q_1^2 q_2^2 (q_1^2 + q_2^2) + \widetilde{h}_2 \, q_1^2 q_2^2 + \widetilde{h}_5 \, M_{V_1}^2 M_{V_2}^2 \, (q_1^2 + q_2^2) + \alpha \, M_{V_1}^4 M_{V_2}^4}{(M_{V_1}^2 - q_1^2)(M_{V_2}^2 - q_1^2)(M_{V_1}^2 - q_2^2)(M_{V_2}^2 - q_2^2)}$$

ightarrow Ansatz for the fit parameters : $\widetilde{p}(a,m_{\pi})=p+\gamma_{1}\,a^{2}+\gamma_{2}\,m_{\pi}^{2}$

2) Canterbury approximants (generalization of Pade approximants) [see P. Sanchez-Puertas talk]
 → disadvantage : many fit parameters

$$C_2^1(Q_1^2, Q_2^2) = \frac{a_{00} + a_{01}(Q_1^2 + Q_2^2) + a_{11}Q_1^2Q_2^2}{1 + b_{01}(Q_1^2 + Q_2^2) + b_{11}Q_1^2Q_2^2 + b_{20}(Q_1^4 + Q_2^4) + b_{21}Q_1^2Q_2^2(Q_1^2 + Q_2^2) + \overline{b_{22}}Q_1^4Q_2^4}$$

Introduction	Lattice calculation	Results	Conclusion
Extrapolation to the physic:	al noint		

- 1) Comparison with phenomenological models :
 - VMD and LMD models (Lowest Meson Dominance) [Moussallam '94] [Knecht et al. '99]

$$\mathcal{F}_{\pi^0\gamma^*\gamma^*}^{\text{LMD}}(q_1^2, q_2^2) = \frac{\alpha M_V^4 + \beta (q_1^2 + q_2^2)}{(M_V^2 - q_1^2)(M_V^2 - q_2^2)}$$

- LMD+V model [Knecht & Nyffeler '01]

$$\mathcal{F}_{\pi^0\gamma^*\gamma^*}^{\text{LMD+V}}(q_1^2, q_2^2) = \frac{\widetilde{h}_0 \, q_1^2 q_2^2 (q_1^2 + q_2^2) + \widetilde{h}_2 \, q_1^2 q_2^2 + \widetilde{h}_5 \, M_{V_1}^2 M_{V_2}^2 \, (q_1^2 + q_2^2) + \alpha \, M_{V_1}^4 M_{V_2}^4}{(M_{V_1}^2 - q_1^2)(M_{V_2}^2 - q_1^2)(M_{V_1}^2 - q_2^2)(M_{V_2}^2 - q_2^2)}$$

ightarrow Ansatz for the fit parameters : $\widetilde{p}(a,m_{\pi})=p+\gamma_{1}\,a^{2}+\gamma_{2}\,m_{\pi}^{2}$

- 2) Canterbury approximants
- 3) Assume the following double z-expansion for space-like momenta : $F(Q_1^2, Q_2^2) = \sum_{n,m=0}^{N} c_{nm} z_1^n z_2^n$

where
$$c_{nm} = c_{mn}$$
 and with $z_i = \frac{\sqrt{t_c + Q_i^2} - \sqrt{t_c - t_0}}{\sqrt{t_c + Q_i^2} + \sqrt{t_c - t_0}}$, $t_0 = t_c \left(1 - \sqrt{1 + Q_{\max}^2/t_c}\right)$

 $\rightarrow t_c = 4m_\pi^2$

- $ightarrow t_0$: reduces the maximum value of $|z_i|$ in the range $[0,Q^2_{
 m max}]$
- \rightarrow VMD or LMD models : coefficients are known
- \rightarrow Fit using : $\tilde{c}_{mn}(a, m_{\pi}) = c_{mn} + \gamma_{mn}^{(1)} a^2 + \gamma_{mn}^{(2)} m_{\pi}^2$

Introduction	Lattice calculation	Results	Conclusion
z-expansion inspired	fits : test of the method		

• Fit the LMD or LMD+V model using a double *z*-expansion

 \hookrightarrow Estimate the systematic error from the truncation of the sum (finite N)

• Results for the LMD+V model with $Q^2_{\rm max} = 4~{\rm GeV}^2$:

 \hookrightarrow black curve = exact results

16

 \hookrightarrow With $Q^2_{\rm max}=4~{\rm GeV^2}$, N=3 is already sufficient to get a precision bellow 1 % for the TFF

 \hookrightarrow The anomaly is recovered with a precision better than 2 %

Introduction	Lattice calculation	Results	Conclusion
Results at the physi	cal point		

Phenomenological models (Preliminary)

- VMD model : bad $\chi^2 \rightarrow$ wrong asymptotic behavior in the double-virtual case
- LMD+V : good χ^2 . Results also in good agreement with experimental data
- $\alpha^{\text{LMD+V}} = 268(7) \text{ GeV}^{-1}$. Other fit parameters also in good agreement with phenomenology.

Intr	$\sim d$	luction	
	UU	IUCLIOI	

Lattice calculation

Results

Results at the physical point

• $\alpha = 0.278(14) \text{ GeV}^{-1}$: compatible with the PRIMEX experiment (precision $\approx 5\%$)

• Results in good agreement with experimental data

Lattice calculation

Results

The pion-pole contribution (preliminary results)

[Jegerlehner & Nyffeler '09]

$$a_{\mu}^{\mathrm{HLbL};\pi^{0}} = \int_{0}^{\infty} dQ_{1} \int_{0}^{\infty} dQ_{2} \int_{-1}^{1} d\tau \ w_{1}(Q_{1},Q_{2},\tau) \ \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{1}^{2},-(Q_{1}+Q_{2})^{2}) \ \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{2}^{2},0) + w_{2}(Q_{1},Q_{2},\tau) \ \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{1}^{2},-Q_{2}^{2}) \ \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-(Q_{1}+Q_{2})^{2},0)$$

 \rightarrow Compatible with the $N_f = 2$ results but with smaller errors [Gérardin et al. '16]

 \rightarrow Compatible with the dispersive result $a_{\mu}^{\text{HLbL};\pi^0} = 62.6^{+3.0}_{-2.5} \times 10^{-11}$ [Hoferichter et al. '18]

Antoine Gérardin

18

The pion transition form factor from lattice QCD

ntroduction	Lattice calculation

Conclusion

- We can compute the TFF for arbitrary spacelike virtualities at low energy
- Several major improvements compared to our previous study
 - \rightarrow Full $\mathcal{O}(a)\text{-improvement}$ to reduce discretisation effects + dynamical strange quark
 - \rightarrow New kinematics included, higher statistics
- \bullet We reproduce the anomaly constraint with a precision of 5~%
- Dedicated study of systematic effects
 - \rightarrow Finite-volume effects are small
 - \rightarrow Hypercubic artifacts seem to be small
 - \rightarrow Disconnected contributions were shown to be small (still to be done with $N_f = 2 + 1$)
- Result for the pion-pole contribution (Preliminary !)

$$a_{\mu}^{\mathrm{HLbL};\pi^0} = (60.4 \pm 3.4) \times 10^{-11}$$

- Future :
 - \rightarrow use our results to constraint the tail of the integrand in the HLbL calculation
 - \rightarrow estimation of finite-size effects
 - \rightarrow add physical pion-mass ensemble