Axion Resonant InterAction DetectioN Experiment

Squid Unpolarized Sprocket magnetometer Source Mass loop Laser-Polarized **3He vessel** Ouartz block with Nb magnetic shielding

Collaborators

INDIANA UNIVERSITY

Andrew Geraci, Chloe Lohmeyer, Nancy Aggarwal Asimina Arvanitaki, Aharon Kapitulnik , Alan Fang Josh Long, Chen-Yu Liu, Mike Snow, Inbum Lee, Justin Shortino , Yannis Semertzidis, Yun Shin, Dongok Kim, Youngeun Kim, Yong-Ho Lee, Lutz Trahms, Wolfgang Kilian, Allard Schnabel, Jens Voigt

Northwestern

Center for Fundamental Physics (CFP)

Physikalisch-Technische Bundesanstal

Braunschweig und Berlin

Stanford University

A. Geraci for the ARIADNE collaboration PATRAS 2022, Mainz, Germany, Aug 8-12

(ARIADNE)

Axions

- Light pseudoscalar particles in many theories Beyond Standard model
- Peccei-Quinn Axion (QCD) solves strong CP problem $\theta_{OCD} < 10^{-10}$
- Dark matter candidate

 Also mediates spin-dependent "fifth-forces" at short range (down to 30 μm)

→ Can be sourced locally No cosmological assumptions! • R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977);

EDM

- S. Weinberg, Phys. Rev. Lett. 40, 223 (1978);
- F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).
- J. E. Moody and F. Wilczek, Phys. Rev. D 30, 130 (1984).

Axion and ALP Searches

Source

Coupling

	Photons	Nucleons	Electrons
Dark Matter (Cosmic) axions	ADMX, HAYSTAC, CAPP, ORGAN, DM Radio, LC Circuit, MADMAX	CASPEr	QUAX
Solar axions	CAST IAXO		
Lab-produced axions	Light-shining-thru- walls (ALPS, ALPS-II)	ARIADNE	

QCD axion parameter space

 $m_a \sim \Lambda_{\rm QCD}^2 / f_a$

Possible couplings: Gluons, photons, fermions

Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

Snowmass 2021 White Paper Axion Dark Matter

J. Jaeckel¹, G. Rybka², L. Winslow³, and the Wave-like Dark Matter Community ⁴

¹Institut fuer theoretische Physik, Universitaet Heidelberg, Heidelberg, Germany ²University of Washington, Seattle, WA, USA ³Laboratory of Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA ⁴Updated Author List Under Construction

Axion-exchange between nucleons

• Scalar coupling $\propto \theta_{\rm QCD}$

• Pseudoscalar coupling

Spin-dependent forces

Monopole-Dipole axion exchange

$$U(r) = \frac{\hbar^2 g_s^N g_p^N}{8\pi m_f} \left(\frac{1}{r\lambda_a} + \frac{1}{r^2}\right) e^{-r/\lambda_a} (\hat{\sigma} \cdot \hat{r}) \equiv \mu \cdot B_{\text{eff}}$$

 $m_a < 6 \text{ meV} \longrightarrow \lambda_a > 30 \ \mu\text{m}$

Fictitious magnetic field

- Different than ordinary B field
- Does not couple to angular momentum
- Unaffected by magnetic shielding

Concept for ARIADNE

A. Geraci et.al, arxiv: 1710.05413 (2017),

Projected Sensitivity

Force Range (cm)

[3] G. Raffelt, Phys. Rev. D 86, 015001 (2012)] [4] G. Vasilakis, et. al, Phys. Rev. Lett. 103, 261801 (2009).
[5] K. Tullney, et. al. Phys. Rev. Lett. 111, 100801 (2013) [6] P.-H. Chu, et. al., Phys. Rev. D 87, 011105(R) (2013).

[7] M. Bulatowicz, et. al., Phys. Rev. Lett. 111, 102001 (2013), [8] Lee, et.al. Phys. Rev.Lett. 120, 161801 (2018).

Experimental setup

Tungsten source mass rotor

11 segments
100 Hz nuclear spin precession frequency
2 x 10²¹ / cc ³He density
3 mm x 3 mm x 150 μm volume
Separation ~200 μm

Laser-polarized ³He sensor

• Metastability exchange optical pumping

<u>Quartz Sample</u> Block Assembly

Fabrication in process- Sierra optics, inc.

SZ40_1.00 022-08-09 12:03

Experimental challenges

Systematic Effect/Noise source	Background Level	Notes
Magnetic gradients	$3 \times 10^{-6} \mathrm{~T/m}$	Limits T_2 to ~ 100 s
		Possible to improve w/shield geometry
Vibration of mass	$10^{-22} { m T}$	For 10 μm mass wobble at ω_{rot}
External vibrations	$5 \times 10^{-20} \text{ T}/\sqrt{\text{Hz}}$	For 1 μ m sample vibration (100 Hz)
Patch Effect	$10^{-21} (\frac{V_{\text{patch}}}{0.1\text{V}})^2 \text{ T}$	Can reduce with V applied to Cu foil
Flux noise in squid loop	$2 \times 10^{-20} \text{ T}/\sqrt{\text{Hz}}$	Assuming $1\mu\Phi_0/\sqrt{\text{Hz}}$
Trapped flux noise in shield	$7 \times 10^{-20} \frac{\mathrm{T}}{\sqrt{\mathrm{Hz}}}$	Assuming 10 cm^{-2} flux density
Johnson noise 🗸	$10^{-20} (\frac{10^8}{f}) T / \sqrt{Hz}$	f is SC shield factor (100 Hz)
Barnett Effect \checkmark	$10^{-22} \left(\frac{10^8}{f}\right) T$	Can be used for calibration above $10~{\rm K}$
Magnetic Impurities in Mass $\checkmark 10$	$^{-25} - 10^{-17} (\frac{\eta}{1 \text{ppm}}) (\frac{10^8}{f}) \text{ T}$	η is impurity fraction (see text)
Mass Magnetic Susceptibility 🗸	$10^{-22} \left(\frac{10^8}{f}\right) T$	Assuming background field is 10^{-10} T
		Background field can be larger if $f > 10^8$

Table 1: Table of estimated systematic error and noise sources, as discussed in the text. The projected sensitivity of the device is $3 \times 10^{-19} \left(\frac{1000s}{T_2}\right)^{1/2} T/\sqrt{Hz}$

Testing completed or in process:

- Spin-speed stability of rotary stage
- Wobble/vibration of source mass (in progress)
- Magnetic shielding factor tests for thin film Niobium
- Tests for Magnetic impurities in Source mass
- Trapped flux noise in Nb films, noise in squid loops (in progress)
- Design/Simulation Work: Magnetic gradient reduction strategy \checkmark

Backgrounds and noise tests

• Superconducting shielding test

→Essential for eliminating magnetic backgrounds

(Johnson noise, magnetic susceptibility, impurities, Barnett effect)

Testing: sputtered Nb on quartz tubes w/supplemental Pb foils

H. Fosbinder-Elkins, Y. Kim, J. Dargert *et.al.* Quantum Sci. Technol. 7 014002 (2022).

• Magnetic impurities test - tungsten source mass

10 $11f_{rot}$ rot 10 Magnetic Field (pT) 10° 10 10⁻² Sensor AV 10 5 Hz Y DOAW 10 Low-field, high-resolution 5 Hz X 10 optical magnetometry 10^{2} 10^{-1} 10^{0} 10^{1} Sensor AM Frequency (Hz) N. Aggarwal, et.al., Phys Rev Research (2021)

Magnetic field noise at llω is less than lpT

Consistent with Johnson noise plus a few (3) isolated surface magnetic domains

Meets spec for design sensitivity

Backgrounds and noise tests

• Rotary stage stability test

Design spec: rotation "wobble" < 50 um

Monitored *in-situ* with fiber optic interferometers

Rotation speed control 8.3 Hz ~ 1 part in 10000 RMS ~ 1 part in 3000

2.55 2.50 2.45 (mm) 2.40 2.35 nterterometer 2.30 2.25

Allows utilization of T₂ > 100s

Preliminary benchtop optical test wobble ~ +/- 40um

Within factor of 2 of spec for design sensitivity Balancing/wobble improvements in process

Conclusion

ARIADNE experiment: Fifth-force NMR search for QCD axion

 \rightarrow lab-sourced search sensitive to QCD axion in under-explored mass range

 $100 \,\mu eV < m_a < 10 \, meV$

 \rightarrow No need to scan mass, independent of local DM density

 \rightarrow Complementary to neutron, proton EDM searches

→ Covers entire QCD axion parameter space when combined with haloscope and helioscope experiments

Estimated Timeline:
Cryostat completion: Fall 2022
Commissioning/ early data taking: 2023

Northwestern Fundamental Physics

Acknowledgements

Alexey Grinin (PD), Nia Burrell (G), Shelby Klomp (G), Aaron Wang (G), Andrew Laueger (UG), **Huan Zhang (G)**

> Collaborators (GW): Peter Barker (UCL)

Astro Theory: Asimina Arvanitaki (Perimeter) Masha Baryakhtar (Perimeter) Mae Hwee Teo (Stanford) Shane Larson (NU) Vicky Kalogera (NU)

Group Members (left to right): **Chloe Lohmeyer (G)**, Evan Weisman (PD), George Winstone (PD), **Nancy Aggarwal (PD)**, Cris Montoya (PD), Daniel Grass (UG), Chethn Galla (G), Eduardo Allejandro (G), William Eom (G), Andy Geraci (PI)