# The Piezoaxionic Effect



## Amalia Madden Perimeter Institute for Theoretical Physics

Based on 2112.11466 with Asimina Arvanitaki (Perimeter Institute) and Ken Van Tilburg (NYU & Flatiron Institute)

# The Piezoaxionic Effect



## Amalia Madden Perimeter Institute for Theoretical Physics

Based on 2112.11466 with Asimina Arvanitaki (Perimeter Institute) and Ken Van Tilburg (NYU & Flatiron Institute)

Light boson DM ( $m_{DM} < 1 eV$ ) is wave-like with the properties:





Light boson DM ( $m_{DM} < 1 eV$ ) is wave-like with the properties:

• Locally,  $a(t) \approx a_0 \cos \frac{m_a c^2}{\hbar} t = a_0 \cos \omega_a t$ 





Light boson DM ( $m_{DM} < 1 eV$ ) is wave-like with the properties:

• Locally,  $a(t) \approx a_0 \cos \frac{m_a c^2}{\hbar} t = a_0 \cos \omega_a t$ 

• Amplitude  $a_0 \propto \frac{\sqrt{\rho_{DM}}}{m_a}$ 





Light boson DM ( $m_{DM} < 1 eV$ ) is wave-like with the properties:

• Locally,  $a(t) \approx a_0 \cos \frac{m_a c^2}{\hbar} t = a_0 \cos \omega_a t$ 

• Amplitude 
$$a_0 \propto \frac{\sqrt{\rho_{DM}}}{m_a}$$

 Small frequency spread (coherence)  $\delta \omega_a \approx \frac{v^2}{2c^2} \, \omega_a \approx 10^{-6} \, \omega_a$ 









**Axion DM** background







**Axion DM** background



# Outline

- Parity violation: piezoelectric crystals and axion couplings
- <u>Schiff's theorem</u>: how to detect parity violating nuclear multipole moments
- Resonant mass detectors
- Proposed experimental setup and sensitivity

# Piezoelectric Crystals

- Piezoelectric are a large class of materials: 20 out of 32 symmetry groups
- Crystal structure breaks parity symmetry  $(x, y, z) \neq (-x, -y, -z)$
- Deformation causes net charge across unit cell (and vice versa).





# Piezoelectric Crystals

- Piezoelectric are a large class of materials: 20 out of 32 symmetry groups
- Crystal structure breaks parity symmetry  $(x, y, z) \neq (-x, -y, -z)$
- Deformation causes net charge across unit cell (and vice versa).







# **Constitutive Equations for Piezoelectricity**



**Permittivity** 

- Electric Displacement

# **Constitutive Equations for Piezoelectricity**



 $\begin{array}{l} \textbf{Electric} \\ \textbf{Field} \end{array} = - \ \underline{h} \cdot \textbf{Strain} \ + \ \frac{1}{\epsilon} \cdot \begin{array}{c} \textbf{Electric} \\ \textbf{Displacement} \end{array}$ 

Permittivity

parity even parity odd Electric Displacement

# **Constitutive Equations for Piezoelectricity**



 $- h \cdot \text{Strain} + \frac{1}{\epsilon}$ Electric Displacement **Electric Field**  $\epsilon$ 

Permittivity

parity even parity odd time-reversal odd **Electric**  $- \xi \theta_a(t) \cdot$ **Displacement** 

**Piezoaxionic** 

Nuclear Spin Direction

 $- \zeta \theta_a(t) \cdot$ 

Nuclear Spin Direction

**Electroaxionic** 



# The piezoaxionic tensor $\xi$ is **ODD** under parity, and can only be present in piezoelectric materials.

present in piezoelectric materials.

present in all dielectrics.

# The piezoaxionic tensor $\xi$ is ODD under parity, and can only be

## The electroaxionic tensor $\zeta$ is **EVEN** under parity, and can be

present in piezoelectric materials.

present in all dielectrics.

# The piezoaxionic tensor $\xi$ is ODD under parity, and can only be

## The electroaxionic tensor $\zeta$ is EVEN under parity, and can be

## We will focus on $\xi$ in this talk!



































# Schiff's Theorem

## QCD axion DM induces an **oscillating** neutron EDM:

 $d_n \sim 10^{-16} \frac{\sqrt{\rho_{DM}}}{m_a f_a} \cos m_a t \cdot e \cdot cm$ 













# Schiff's Theorem

## QCD axion DM induces an oscillating neutron EDM:

$$d_n \sim 10^{-16} \frac{\sqrt{\rho_{DM}}}{m_a f_a} \cos m_a t$$

If we treat an atom as a system of *point* particles, nuclear EDM is perfectly shielded by electron cloud [*Schiff* 1963].



 $\cdot e \cdot cm$ 









READOUT

# Schiff's Theorem

## QCD axion DM induces an **oscillating** neutron EDM:

$$d_n \sim 10^{-16} \frac{\sqrt{\rho_{DM}}}{m_a f_a} \cos m_a t$$

If we treat an atom as a system of point particles, nuclear EDM is perfectly shielded by electron cloud [Schiff 1963].



 $\cdot e \cdot cm$ 



























**Resolution:** Schiff's theorem violated by <u>finite</u> size effects:

## $V_{\text{Schiff}} = 4\pi e \, \mathcal{S} \cdot \nabla (\delta_e(\mathbf{r}))$

"Schiff moment  $\mathcal{S}$ "







READOUT





**Resolution:** Schiff's theorem violated by <u>finite</u> size effects:

CRYSTAL

ATOM

$$V_{\text{Schiff}} = 4\pi e \, \mathscr{S} \cdot \nabla(\delta_e(\mathbf{r}))$$
  
"Schiff moment  $\mathscr{S}$ "

for non-deformed nuclei







•  $V_{electrons} = V_{crys} + V_{schiff}$ 







•  $V_{electrons} = V_{crys} + V_{schiff}$ 

**AXION** 

•  $V_{crys}$  mixes s- and p- like electrons in ground state, to give admixtures  $\epsilon_s$  and  $\epsilon_p$ . This gives an energy shift:





NUCLEUS

$$\epsilon_s \epsilon_p^* \langle s | V_{schiff} | p \rangle + c.c$$



• 
$$V_{electrons} = V_{crys} + V_{schiff}$$

•  $V_{crys}$  mixes s- and p- like electrons in ground state, to give admixtures  $\epsilon_s$  and  $\epsilon_p$ . This gives an energy shift:

$$\langle H_{schiff} \rangle \simeq \sum_{s,p}$$

• 
$$\xi \bar{\theta}_a \sim \partial_{Strain} \frac{\langle H_{Schiff} \rangle}{V_{cell}} \simeq \frac{4\pi e \mathcal{S}}{V_{cell}} \times \frac{\partial(\epsilon_s \epsilon_p^*)}{\partial_{Strain}} + c.c$$



$$\epsilon_s \epsilon_p^* \langle s | V_{schiff} | p \rangle + c . c$$



• 
$$V_{electrons} = V_{crys} + V_{schiff}$$

**AXION** 

•  $V_{crys}$  mixes s- and p- like electrons in ground state, to give admixtures  $\epsilon_s$  and  $\epsilon_p$ . This gives an energy shift:

 $\langle H_{schiff} \rangle \simeq \sum$ 

*s*,*p* 

• 
$$\xi \bar{\theta}_a \sim \partial_{Strain} \frac{\langle H_{Schiff} \rangle}{V_{cell}} \simeq \frac{4\pi e \mathcal{S}}{V_{cell}} \times \frac{\partial (\epsilon_s)}{\partial_{Strain}}$$

NUCLEUS

$$\epsilon_s \epsilon_p^* \langle s | V_{schiff} | p \rangle + c.c$$















**C** = elastic stiffness tensor

 $S = |\xi c^{\dagger - 1} \hat{I} \theta_a|$ 









## **Resonant Mass Detectors**



In the 1960's: The Weber Bar,  $S \sim 10^{-17}$ 



# Today: AURIGA, NAUTILUS, MiniGrail, $S \sim 10^{-25}$

# **Experimental Setup**

- 1. Find a piezoelectric material with low mechanical noise and big Schiff moments
- 2. Align nuclear spins using a magnetic field
- 3. Cool to  $\sim 1 \, mK$  to reduce thermal noise
- 4. Oscillating voltage across crystal generates a tiny AC, measured using a SQUID









Fluctuating nuclear spins Small effect, NMR frequency  $\neq$ mechanical resonance frequency

Fluctuating magnetic impurities in material

≲ppm

Vibrational noise Systematic, demonstrated at AURIGA

Thermal noise limited, main sources: crystal mechanical noise and SQUID noise



### Magnetization noise $\rightarrow$ fictitious EMF

## Noise:

# Idealized Forecast



### https://github.com/kenvantilburg/piezoaxionic-effect



 $H_f \simeq -\frac{G_{aff}}{2}\sigma_f \cdot \left(\nabla a + \dot{a}\frac{\mathbf{p}_f}{m_f}\right)$ 











- Precise Schiff moment calculations for stable, octupole deformed nuclei
- Density functional theory (DFT) calculations for  $\xi$  and  $\zeta$
- Further experimental investigation into suitable materials.
- Axion mediated force experiments from piezoelectric sources (figure)

# **Future Directions**



# Summary

- New observable for the QCD axion that probes its model independent coupling
- Experimental set-up with sensitivity for axion masses in range  $10^{-11} eV$  to  $10^{-7} eV$
- Complementary to cavity experiments



## Materials

Piezoelectric make up a large class of materials - 20 out of 32 symmetry groups!

## Materials

- High density of nuclei with large Schiff moments and low radioactivity
- Good acoustic properties (high Q-factor)
- Strong piezoelectric properties (large  $\xi$ ) lacksquare
- Structural similarity to well-known bulk resonator  $\bullet$ crystals.

Piezoelectric make up a large class of materials - 20 out of 32 symmetry groups!

## Materials

### Piezoelectric make up a large class of materials - 20 out of 32 symmetry groups!

- High density of nuclei with large Schiff momentation and low radioactivity
- Good acoustic properties (high Q-factor)
- Strong piezoelectric properties (large  $\xi$ )
- Structural similarity to well-known bulk resorcrystals.

| onto  | Class           | Candidates                                                                     | Similar Crystals                           |
|-------|-----------------|--------------------------------------------------------------------------------|--------------------------------------------|
| ients |                 | $Na \mathbf{Dy} H_2 S_2 O_9$                                                   | $SiO_2$ (quartz)                           |
|       | 32              |                                                                                | $Ga_5La_3SiO_{14}$ (langasite)             |
|       |                 | $\mathbf{Bi}\mathrm{PO}_4$                                                     | $GaPO_4$ (gallium orthophosphate)          |
|       | _               | ${f U}({ m CuAs})_2$                                                           | tourmaline                                 |
|       | $\bar{3}$ m     | $\mathbf{Dy}_2 \mathrm{SO}_2$                                                  | $LiNbO_3$ (lithium niobate)                |
|       |                 | $\mathbf{Dy}\mathbf{OF}$                                                       | $LiTaO_3$ (lithium tantalate)              |
|       | $4 \mathrm{mm}$ | $\mathbf{Dy}\mathrm{Si}_{3}\mathrm{Ir}\ \mathbf{Dy}\mathrm{Ag}\mathrm{Se}_{2}$ | $Li_2B_4O_7$ (lithium tetraborate)         |
|       | 7.0             | $\mathbf{Dv}$ AgTe <sub>2</sub>                                                | $NH_6PO_4$ (ADP)                           |
|       | 42m             | $\mathbf{Dy}_2\mathbf{Be}_2\mathbf{GeO}_7$                                     | $\rm KH_2PO_4~(KDP)$                       |
| nator | mm2             | $\mathrm{UCO}_5$                                                               | $Ba_2NaNb_5O_{15}$ (barium sodium niobate) |
|       |                 |                                                                                |                                            |

### Database: https://materialsproject.org/

)

# Scanning





- Monitor all harmonics of a given mode
- Vary electrical resonance frequency using capacitor and inductor

