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Cavity Quality Factor in Axion Haloscope
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Cavity Quality Factor in Axion Haloscope
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Quality Factor of Superconducting Cavities
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➢ Origin of Energy Loss

➢ Surface Resistance Increase in a High Magnetic Field
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Posen et al SUST(2017)30
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Superconductor in a High Magnetic Field
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f

Hext

https://www.cee.elektro.dtu.dk/news/nyhed?id=E6796539-A36B-4CA5-BC31-CBDBBCA335D8

Hm < Hc2

Hm

Three Phases of Type II Superconductor

Hc2,ReBCO > 100 T

➢ Two criteria for evaluating materials

✓ Large upper critical field (Hc2 > 30 T)

• Lower Vortex Density

✓ High depinning frequency (ω0 > 1 GHz)

• ω0 = k / η

• ω ≫ ω0 (Drag force ≫ Pinning force)

Depinning Frequency
flux-flow regime
(high dissipation)

flux-creep

Melting field

Golosovsky et al SUST (1996) 9

Axion Haloscope
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Material Evaluation
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100 mK
8 GHz

Rs (B = 0 T)
(Ohm)

Rs (B = 8 T, ∥c)
(Ohm)

Critical Field (Hc2)
Depinning
Frequency

OFHC Cu (Metal) ~ 7E-3 ~ 7E-3 None None

NbTi (LTS) ~ 1E-6 ~ 4e-3 ~ 13 T ~ 45 GHz

Nb3Sn (LTS) ~ 1E-6 ? ~ 25 T ~ 6 GHz

Bi-2212 (HTS)
Bi-2223 (HTS)

~ 1E-5 ?
> 100 T (∥ab)

?

Tl-1223 (HTS) ~ 1E-5 ~ 1e-4
> 100 T (∥ab)

12 – 480 MHz

ReBCO (HTS) ~ 1E-5 ~ 1e-4 > 100 T (∥ab) 10 – 100 GHz

Gatti et al. PRD(2019)

Calatroni et al. SUST(2017)

Romanov et al.
Scientific Reports(2020)

Larbalestier et al.
Nature(2001)

Larbalestier et al.
Nature(2001)

Larbalestier et al.
Nature(2001)

Weak Pinning

Calatroni et al. SUST(2017)

Romanov et al.
Scientific Reports(2020)

Ormeno et al.
PRB(2001)

Strong Pinning

Alimenti et al. SUST(2020)

Small

Small

Low Temperature Superconductors (LTS)

High Temperature Superconductors (HTS)



Biaxially-Textured ReBCO on 3D Surface
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➢ Weak links at grain boundaries degrades surface resistance.

➢ Biaxial texture is essential to avoid weak links.

➢ Directly forming a biaxially-textured ReBCO film on the deeply concaved inner 

surface of the cavities is difficult.

➢ Can we make a cavity with ReBCO tapes?

Ion-beam?
Biaxially-Textured Substrate?
MgO deposition?

M. J. Lancaster, “Passive microwave device applications of HTS”, 
Cambridge University Press (2006).

Biaxially Textured

a or b
crystal axes



HTS Cavity Development in CAPP
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CAPP’s Solution
Well-textured Commercial ReBCO Tapes + Cavity Body → 3D HTS Cavity

THEVA Catalog (2017)

2D Material 3D Surface



HTS Microwave Cavity Design Background
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Phys. Rev. Lett. 126 (2021) 191802
Phys. Rev. Lett. 125 (2020) 221302

➢ Cutting in surface current direction in TM010 mode.

• The split cavity has been used in axion haloscope experiment at CAPP.

• Only evanescent field enter into the gaps

➢ We generalized split cavity concept for HTS microwave cavities.

• N polygon structure with N gaps

Split Cavity Polygon Cavity

JTM010

JTM010

Gap
Gap JTM010

Gap



HTS Microwave Cavity Design Simulation
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Gap Only an evanescent field
enters into the gap 
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➢ Surface current direction is parallel to the in-plane direction of gaps. 

➢ Only evanescent field enter into a gap.

➢ Misalignments are considered based on fabrication error.

• Gap geometry: Gap tilting, Step between superconducting main surfaces

• Surface Condition: Metal on the gap sides (Rside, Ag), Defects on the main surface (Rdef, Ni-9W).



N Gaps Do Not Degrade QTM010
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Gap Only an evanescent field
enters into the gap 
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N gaps do not degrade Q factor
less than axion Q factor (106)

Surface defect can degrade Q factor less than 106



HTS Cavity Construction
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Etching: Ammonia Water + Hydrogen Peroxide



6.9 GHz Polygon Cavity
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➢ (2019) First Prototype HTS Cavity

✓ (August 15th) Q ~ 330,000 at 8 T

𝑸𝒀𝑩𝑪𝑶/𝑸𝑪𝒖 ≈ 𝟔
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2.3 GHz HTS Cavity for Axion Haloscope
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➢ 2.3 GHz HTS Cavity

✓ (January 18th, 2020) Q ~ 500,000 at 8 T (THEVA GdBCO Tape, 1.5 L)

Q0 ~ 500,000 at 8 T



Axion Search with Superconducting Cavity
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➢ Total System Noise (𝑇𝑠𝑦𝑠 = 𝑇𝑒𝑓𝑓 + 𝑇𝑎𝑑𝑑)

• Effective cavity noise temperature (𝑇𝑒𝑓𝑓 ≈ 60mK)

✓ 𝑇𝑒𝑓𝑓 =
ℎ𝜈

𝑘𝐵

1

𝑒
ℎ𝜈/𝑘𝐵𝑇𝑝ℎ𝑦−1

+
1

2
, 𝑇𝑝ℎ𝑦 (cavity physical temperature ~ 40 mK)

• Added noise by the receiver chain (𝑇𝑎𝑑𝑑 ≈ 120mK)

• Spectrum Analyzer Efficiency (𝜂 ≈ 0.7)
𝑑𝑓

𝑑𝑡
= 𝜼

4

5

1

𝑆𝑁𝑅2
𝑃0

𝑘𝐵𝑻𝒔𝒚𝒔

𝛽

1 + 𝛽

2
𝑄𝑙𝑄𝑎

2

𝑄𝑙 + 𝑄𝑎

CAPP-PACE Detector Setup



CAPP-PACE Detector History
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HEMT Run JPA Run SC Run

Frequency Range 2.457 – 2.749 GHz 2.27 – 2.30 GHz 2.273 – 2.295 GHz

Magnetic Field (B) 7.2 T 7.2 T 6.95 T

Volume (V) 1.12 L 1.12 L 1.5 L

Quality Factor (Q0) 100,000 100,000 500,000

Geometrical Factor 
(C)

0.51 – 0.66 0.45 0.51 – 0.65

System Noise (Tsys) ~ 1.1 K ~ 200 mK ~ 180 mK

Scan Rate (Arb.) 1 18 150

Phys. Rev. Lett. 126 (2021)

∝B4V2C2Q0/Tsys
2

Re-scanning NowOn ArXiv, Will submit soon
(Mr. Jinsu Kim et al.)
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HEMT Run JPA Run SC Run
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∝B4V2C2Q0/Tsys
2

Re-scanning Now
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Tuning Mechanism
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h = depth

Simplified Tuning Simulation
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Josephson Parametric Amplifier (JPA)
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10 𝜇m

Kim et al ArXiv:2207.13597 (2022)

Kutlu et al SUST (2022)

SQUID (𝐿 = 𝜕Φ/𝜕𝐼)
as Variable Inductor

JPA run total system noise
204 ± 16 mK, 1.87 QNL

𝑇𝑠𝑦𝑠 = 𝑇𝑐𝑎𝑣 + 𝑇𝑎𝑑𝑑 , 𝑇𝑎𝑑𝑑 = 𝑇𝐽𝑃𝐴,𝑖𝑑𝑙𝑒𝑟 + 𝑇𝐽𝑃𝐴,𝑖𝑟𝑟 +
𝑇𝑝𝑜𝑠𝑡𝐽𝑃𝐴
𝐺𝐽𝑃𝐴

𝑇𝐽𝑃𝐴,𝑖𝑑𝑙𝑒𝑟 = 𝑇𝑐𝑎𝑣 =
ℎ𝜈

𝑘𝐵

1

𝑒ℎ𝜈/𝑘𝐵𝑇𝑝ℎ𝑦 − 1
+
1

2

Total system noise

Noise from cavity

Chain added noise JPA added noise from idler photon

JPA irreducible noise in the phase-insensitive operation

JPA Gain

Added noise generated
in the post-JPA chain

➢ JPA is Josephson junction based quantum-noise-limited amplifier

➢ CAPP Flux-driven JPA was developed in collaboration with Nakamura group at Univ. of Tokyo and RIKEN

➢ Operation range: 2.27 GHz – 2.30 GHz

➢ JPA was protected by two layer superconducting shield (shielding factor: roughly 1,500)

➢ Total system noise temperature



Josephson Parametric Amplifier (JPA)
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10 𝜇m
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Kutlu et al SUST (2022)

SQUID (𝐿 = 𝜕Φ/𝜕𝐼)
as Variable Inductor

SC run total system noise
171 ± 15 mK, 1.56 QNL

𝑇𝑠𝑦𝑠 = 𝑇𝑐𝑎𝑣 + 𝑇𝑎𝑑𝑑 , 𝑇𝑎𝑑𝑑 = 𝑇𝐽𝑃𝐴,𝑖𝑑𝑙𝑒𝑟 + 𝑇𝐽𝑃𝐴,𝑖𝑟𝑟 +
𝑇𝑝𝑜𝑠𝑡𝐽𝑃𝐴
𝐺𝐽𝑃𝐴

𝑇𝐽𝑃𝐴,𝑖𝑑𝑙𝑒𝑟 = 𝑇𝑐𝑎𝑣 =
ℎ𝜈

𝑘𝐵

1

𝑒ℎ𝜈/𝑘𝐵𝑇𝑝ℎ𝑦 − 1
+
1

2

Total system noise

Noise from cavity

Chain added noise JPA added noise from idler photon

JPA irreducible noise in the phase-insensitive operation

JPA Gain

Added noise generated
in the post-JPA chain

➢ JPA is Josephson junction based quantum-noise-limited amplifier

➢ CAPP Flux-driven JPA was developed in collaboration with Nakamura group at Univ. of Tokyo and RIKEN

➢ Operation range: 2.27 GHz – 2.30 GHz

➢ JPA was protected by two layer superconducting shield (shielding factor: roughly 1,500)

➢ Total system noise temperature



~ 21 dB gain

~ 120 mK noise

Josephson Parametric Amplifier (JPA)
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10 𝜇m

Kutlu et al SUST (2021)
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➢ JPA is Josephson junction based quantum-noise-limited amplifier

➢ CAPP Flux-driven JPA was developed in collaboration with Nakamura group at Univ. of Tokyo and RIKEN
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➢ Total system noise temperature



Superconducting Cavity Run Operation
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B0 V C Q0 β SNR η Ttot

6.95 T 1.5 L ~ 0.6 430,000 ~ 1.75 3.5 0.7 ~ 180 mK

~ 0.6 MHz / day

➢ At 2.3 GHz for 𝑔𝛾 = 0.99 × 𝑔𝛾
𝐾𝑆𝑉𝑍 axion

➢ For 2272 – 2295 MHz (23 MHz), ~ 39days

• 1st phase (2284 – 2295 MHz)

- Oct 7 ~ Oct 16, 2021

• 2nd phase (2284 – 2295 MHz)

- Oct 26 ~ Nov 4, 2021

• 3rd phase (2272 – 2284 MHz)

- Nov 5 ~ Nov 26, 2021

• Re-scan

- Jun 20 ~, 2022

Total 8077 spectra



Vertical Combination

Analysis
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Raw Spectrum Baseline Removal

Grand Spectrum (1st & 2nd Phase)

2-stage method will be used in 2020 JPA run
(First Scan: 3.5 sigma, Second & Re-scan 5 sigma)
Re-scan candidate will be calculated

Savitzky-Golay Filter
70 % SNR Efficiency (MC Simulation Result)



Vertical Combination
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Raw Spectrum Baseline Removal

70 % SNR Efficiency (MC Simulation Result)

Grand Spectrum (1st & 2nd Phase)

2-stage method will be used in 2020 JPA run
(First Scan: 3.5 sigma, Second & Re-scan 5 sigma)
Re-scan candidate will be calculated



Data & Exclusion Plot
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2020 JPA Run (2.7 KSVZ)



Data & Exclusion Plot
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SC Run Phase 1 & 2

~ 1.1 KSVZ



History of Superconducting Cavity R&D
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13 Million Q Factor Cavity at 8 T
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13 Million Q Factor Cavity at 8 T
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➢ The result shows that HTS cavity can reach 10 times larger than axion quality factor 

(~ 106).

➢ If we use next generation cavities, the scan rate will be more than 50 times bigger 

than copper cavities.

➢ CAPP is also planning to construct 36 liter HTS cavity for CAPP-12TB.



Summary
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➢ Superconducting Cavity R&D at CAPP aims to enhance axion search with a high Q factor 

cavity using superconductors.

➢ ReBCO is one of the most promising materials for realizing a high Q cavity in a high 

magnetic field.

➢ CAPP successfully developed a half-million Q factor ReBCO cavity with a 2.3 GHz 

resonance frequency working in an 8 T magnetic field.

➢ The physics data from the 2.3 GHz ReBCO cavity was successfully taken.

➢ CAPP-PACE team is now planning to finalize analysis and take rescan data.

➢ Recently, CAPP developed 13 M Q factor cavity.

➢ Next generation cavities are waiting for the experiments.

• Plan for developing high-temperature superconducting cavity for 12 TB magnet



Magnetic Field in a Superconducting Cavity
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8 T Coil6.9 GHz
Polygon Cavity

SC films
t = 100 um
mu ~ 0
(Near Perfect
Diamagnetism)

• Simulation Situation: Polygon Shell with 100 𝜇𝑚 Perfect Superconductor

• ∆𝑩𝒂𝒗𝒈/𝑩𝒂𝒗𝒈~𝟏𝟎
−𝟒 even with over-estimated condition of shielding

• Actual Situation: 1 – 5 𝜇𝑚 Superconducting Film & Non-Perfect Diamagnetism



N Gaps Do Not Degrade QTM010
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N gaps do not degrade Q factor
less than axion Q factor (106)

Q ~ 107

Q ~ 105
Surface defect can degrade 
Q factor less than 106

Q ~ 107

Gap Only an evanescent field
exists in the gap 

JTM010
JTM010

Legend explantiont
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Without main surface loss



Bixaxially-Textured ReBCO
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M. J. Lancaster, “Passive microwave device applications of HTS”, 
Cambridge University Press (2006).

Biaxially Textured

a or b
crystal axes

IEEE Trans. Appl. Supercond. 23 (2013) 6601205

➢ Biaxial texture is essential to avoid weak links.

• Weak links at grain boundaries degrades surface resistance.

• Biaxially-textured ReBCO films show low surface resistance at high magnetic field

• Biaxially-textured ReBCO films show high depinning frequency.

➢ Many providers can produce biaxially-textured ReBCO film.
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8 GHz, Rutile Resonator

Scientific Reports 10 (2020) 12325
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M. J. Lancaster, “Passive microwave device applications of HTS”, 
Cambridge University Press (2006).

Biaxially Textured

a or b
crystal axes

IEEE Trans. Appl. Supercond. 23 (2013) 6601205
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8 GHz, Rutile Resonator

Scientific Reports 10 (2020) 12325

Fujikura APC
→ Stronger Pinning

High Depinning Frequency

➢ Biaxial texture is essential to avoid weak links.

• Weak links at grain boundaries degrades surface resistance.

• Biaxially-textured ReBCO films show low surface resistance at high magnetic field

• Biaxially-textured ReBCO films show high depinning frequency.

➢ Many providers can produce biaxially-textured ReBCO film.
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M. J. Lancaster, “Passive microwave device applications of HTS”, 
Cambridge University Press (2006).

Biaxially Textured

a or b
crystal axes

IEEE Trans. Appl. Supercond. 23 (2013) 6601205

SUST 32 (2019) 094006

(APC) (BaHfO3)

Many Providers

➢ Biaxial texture is essential to avoid weak links.

• Weak links at grain boundaries degrades surface resistance.

• Biaxially-textured ReBCO films show low surface resistance at high magnetic field

• Biaxially-textured ReBCO films show high depinning frequency.

➢ Many providers can produce biaxially-textured ReBCO film.



THEVA Catalog (2017)

Various Deposition Method for ReBCO
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➢ Directly forming a biaxially-textured 

ReBCO film on the deeply concaved 

inner surface of the cavities is difficult.

➢ Can we make a cavity with ReBCO

tapes?

Rolling-Assisted Biaxially Textured Substrates (RABiTS)

IEEE Trans. Appl. Supercond. 23 (2013) 6601205

Inclined-Substrate Deposition (ISD)

Ion-beam?
Biaxially-Textured Substrate?
MgO deposition?

Ion-Beam Assisted Deposition (IBAD)

Superconductors in the Power Grid, Elsevier (2015)


