

Axion dark matter search results around 9.5 µeV at CAPP with a high-temperature superconducting cavity

Danho Ahn^{1,2}

(CAPP) Jinsu Kim, Heesu Byun, Ohjoon Kwon, Seongtae Park, Dojun Youm, Woohyun Chung*, Caglar Kutlu, Jinmeyong Kim, Boris Ivanov, Sergey Uchaikin, Seonjeong Oh, Andrei Matlashov, and Yannis K. Sermertzidis.

(University of Tokyo & RIKEN) Arjan van Loo and Yasunobu Nakamura

¹Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea ²Center for Axion and Precision Physics Research, Institute for Basic Science, Daejeon 34051, Repulic of Korea

2022 17th PATRAS WORKSHOP

Outline

(Credit: ESO/L. Calçada)

Motivation & Goal

- High Q factor superconducting cavity for dark matter axion haloscope
- ➢ High T_c Superconductor (HTS)
- HTS Cavity Development
- Dark Matter Axion Search with HTS Cavity
- Recent Cavity Developments & Prospects

Summary

Cavity Quality Factor in Axion Haloscope

2022-08-09

2022 17th PATRAS WORKSHOP

Cavity Quality Factor in Axion Haloscope

Quality Factor of Superconducting Cavities

- ➢ Origin of Energy Loss $P_{surf} \propto R_s$ Low Surface Resistance
 → Superconductor (SC) $\frac{1}{Q} = \frac{P_{loss}}{\omega_0 U} = \frac{1}{\omega_0 U} P_{surf}$ High Q
 Surface Current Loss
- Surface Resistance Increase in a High Magnetic Field

Superconductor in a High Magnetic Field

Material Evaluation

100 mK 8 GHz	R _s (B = 0 T) (Ohm)	R _s (B = 8 T, ॥c) (Ohm)	Critical Field (H _{c2})	Depinning Frequency
OFHC Cu (Metal)	~ 7E-3 ors (LTS)	~ 7E-3	None	None
NbTi (LTS) Gatti <i>et al.</i> PRD(2019)	~ 1E-6	~ 4e-3	Small ~ 13 T	~ 45 GHz
Nb ₃ Sn (LTS) Alimenti <i>et al.</i> SUST(2020) High Temperature Superconduct	~ 1E-6	?	~ 25 T	small ~ 6 GHz
Bi-2212 (HTS) Bi-2223 (HTS)	~ 1E-5	?	> 100 T (IIab) Larbalestier <i>et al.</i> Nature(2001)	Weak Pinning ?
TI-1223 (HTS)	~ 1E-5	~ 1e-4 Calatroni <i>et al</i> . SUST(2017)	> 100 T (IIab) Larbalestier <i>et al.</i> Nature(2001)	12 — 480 MHz Calatroni <i>et al.</i> SUST(2017)
ReBCO (HTS)	~ 1E-5 Ormeno <i>et al.</i> PRB(2001)	~ 1e-4 Romanov <i>et al.</i> Scientific Reports(2020)	> 100 T (II ab) Larbalestier <i>et al.</i> Nature(2001)	Strong Pinning 10 — 100 GHz Romanov <i>et al.</i> Scientific Reports(2020)

Biaxially-Textured ReBCO on 3D Surface

- > Weak links at grain boundaries degrades surface resistance.
- > Biaxial texture is essential to avoid weak links.
- Directly forming a biaxially-textured ReBCO film on the deeply concaved inner surface of the cavities is difficult.

> Can we make a cavity with ReBCO tapes?

HTS Cavity Development in CAPP

CAPP's Solution

Well-textured Commercial ReBCO Tapes + Cavity Body → 3D HTS Cavity

2D Material

3D Surface

HTS Microwave Cavity Design Background

- > Cutting in surface current direction in TM010 mode.
 - The split cavity has been used in axion haloscope experiment at CAPP. {
 Phys. Rev. Lett. 126 (2021) 191802
 Phys. Rev. Lett. 125 (2020) 221302
 Phys. Rev. Lett. 125 (2020) Phys. Phys. Rev. Lett. 125 (2020) Phys. Phys. Rev. Lett. 125 (2020) Phys. Phys.
 - Only evanescent field enter into the gaps
- > We generalized split cavity concept for HTS microwave cavities.

N polygon structure with N gaps

HTS Microwave Cavity Design Simulation

- > Surface current direction is parallel to the in-plane direction of gaps.
- > Only evanescent field enter into a gap.
- > Misalignments are considered based on fabrication error.
 - Gap geometry: Gap tilting, Step between superconducting main surfaces
 - Surface Condition: Metal on the gap sides (R_{side}, Ag), Defects on the main surface (R_{def}, Ni-9W).

N Gaps Do Not Degrade Q_{TM010}

N gaps do not degrade Q factor less than axion Q factor (10⁶)

Condition	$R_{side} (\mathrm{m}\Omega)$	$R_{def} (\mathrm{m}\Omega)$	Q
VGs	0	0	$\sim 10^{12}$
TGs	0	0	$\sim 10^8$
TSGs	0	0	3×10^7
TSGs + Silver Side	Ag $(5 \text{ m}\Omega)$	0	2×10^7
TSGs + Silver Side + Silver Edge	Ag $(5 \text{ m}\Omega)$	1% Ag $(5 \mathrm{m}\Omega)$	5×10^{6}
TSGs + Silver Side + Silver Edge + Ni-9W Defect	Ag $(5 \text{ m}\Omega)$	$1 - 5\%$ Ni-9W (50 m Ω)	$\sim 10^5$

Surface defect can degrade Q factor less than 10⁶

TABLE I: Quality factor results in various conditions. The Q factor values are the estimations for a case of 20 μ m gaps. The first three conditions are vertical gaps (VG), tilted gaps (TG), and tilted stepped gaps (TSG).

HTS Cavity Construction

Etching: Ammonia Water + Hydrogen Peroxide

6.9 GHz Polygon Cavity

(2019) First Prototype HTS Cavity (August 15th) Q ~ 330,000 at 8 T

PHYSICAL REVIEW APPLIED 17, L061005 (2022)

Letter

Biaxially Textured YBa₂Cu₃O_{7-x} Microwave Cavity in a High Magnetic Field for a Dark-Matter Axion Search

Danho Ahn⁰,^{1,2} Ohjoon Kwon,² Woohyun Chung⁰,^{2,*} Wonjun Jang,^{3,†} Doyu Lee,^{2,‡} Jhinhwan Lee,⁴ Sung Woo Youn⁰,² HeeSu Byun,² Dojun Youm,¹ and Yannis K. Semertzidis^{1,2}

¹Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea

² Center for Axion and Precision Physics Research, Institute for Basic Science, Daejeon 34051, Republic of Korea ³ Center for Quantum Nanoscience, Institute for Basic Science, Seoul 33760, Republic of Korea ⁴ Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science, Pohang 37673, Republic of Korea

(Received 10 March 2022; accepted 5 May 2022; published 28 June 2022)

A high-quality (*Q*)-factor microwave resonator in the presence of a strong magnetic field can have a wide range of applications, such as in axion dark matter searches where the two aspects must coexist to enhance the experimental sensitivity. We introduce a polygon-shaped cavity design with biaxially textured YBa₂Cu₃O_{7-x} superconducting tapes covering the entire inner wall. Using a 12-sided polygon cavity, we obtain substantially improved *Q* factors of the 6.9-GHz TM₀₁₀ mode at 4 K with respect to a copper cavity and observe no considerable degradation in the presence of magnetic fields up to 8 T.

Magnetic Field (T)

2.3 GHz HTS Cavity for Axion Haloscope

- > 2.3 GHz HTS Cavity
 - ✓ (January 18th, 2020) Q ~ 500,000 at 8 T (THEVA GdBCO Tape, 1.5 L)

Axion Search with Superconducting Cavity

- > Total System Noise $(T_{sys} = T_{eff} + T_{add})$
 - Effective cavity noise temperature ($T_{eff} \approx 60$ mK)

$$\checkmark \quad T_{eff} = \frac{h\nu}{k_B} \left(\frac{1}{e^{h\nu/k_B T_{phy}} - 1} + \frac{1}{2} \right), T_{phy} \text{ (cavity physical temperature ~ 40 mK)}$$

- Added noise by the receiver chain ($T_{add} \approx 120$ mK)
- Spectrum Analyzer Efficiency ($\eta \approx 0.7$)

$$\frac{df}{dt} = \eta \frac{4}{5} \frac{1}{SNR^2} \left(\frac{P_0}{k_B T_{sys}} \frac{\beta}{1+\beta} \right)^2 \frac{Q_l Q_a^2}{Q_l + Q_a}$$

	HEMT Run Phys. Rev. Lett. 126 (2021)	JPA Run On ArXiv, Will submit soon (Mr. Jinsu Kim <i>et al</i> .)	SC Run Re-scanning Now
Frequency Range	2.457 – 2.749 GHz	2.27 – 2.30 GHz	2.273 – 2.295 GHz
Magnetic Field (B)	7.2 T	7.2 T	6.95 T
Volume (V)	1.12 L	1.12 L	1.5 L
Quality Factor (Q_0)	100,000	100,000	500,000
Geometrical Factor (C)	0.51 – 0.66	0.45	0.51 – 0.65
System Noise (T _{sys})	~ 1.1 K	~ 200 mK	~ 180 mK
Scan Rate (Arb.) $\propto R^4 V^2 C^2 O_2 / T_2^2$	1	18	150
2022-08-09	2022 17th PATF	RAS WORKSHOP	17

	HEMT Run Phys. Rev. Lett. 126 (2021)	JPA Run On ArXiv, Will submit soon (Mr. Jinsu Kim <i>et al</i> .)	SC Run Re-scanning Now		
Frequency Range	2.457 – 2.749 GHz	2.27 – 2.30 GHz	2.273 – 2.295 GHz		
Magnetic Field (B)	7.2 T	PHYSICAL REVIEW LET	FTERS 126, 191802 (2021)		
Volume (V)	1.12 L	First Results from an Axion Hal Ohjoon Kwon [©] , ¹ Doyu Lee [©] , ^{1,†} Woohyun Chung Hyoungsoon Chai ² Jihoon Chai [©] , ^{1,‡} Yonuk Chong. ^{5,§} H	Results from an Axion Haloscope at CAPP around 10.7 μeV), ¹ Doyu Lee ^{0,1,†} Woohyun Chung ^{0,1,*} Danho Ahn, ^{2,1} HeeSu Byun, ¹ Fritz Caspers ^{0,3,4} ihoon Chai ^{0,1,‡} Yonuk Chong ^{5,§} Hoyong Jeong ^{6,6} Junu Jeong ^{2,1} Jihn F. Kim ⁷ Jinsu Kim ^{2,1}		
Quality Factor (Q_0)	100,000	Cajlar Kutlu [®] , ^{2,1} Jihnhwan Lee [®] , ⁸ MyeongJae Lee, ¹ Soohyung Lee, ¹ Andrei Matlashov [®] , ¹ Seonjeong Oh, ¹ Seongtae Park [®] , ¹ Sergey Uchaikin [®] , ¹ SungWoo Youn [®] , ¹ and Yannis K. Semertzidis [®] , ¹² ¹ Center for Axion and Precision Physics Research (CAPP), IBS, Daejeon 34051, Republic of Korea ² Department of Physics, KAIST, Daejeon 34141, Republic of Korea ³ CERN, European Organization for Nuclear Research, CH-1211 Genve 23, Switzerland			
Geometrical Factor (C)	0.51 – 0.66	 *ESI (European Scientific Institute) A ⁵Korea Research Institute of Standards and ⁶Department of Physics, Korea Unive ⁷Department of Physics, Kyung Hee *Center for Artificial Low Dimensional Electronia (Received 15 January 2021; accepted 24 March 20 The Center for Axion and Precision Physics Rese axion dark matter using ultralow temperature microw press press 102 (2021) 102 (2021) 	rchamps Technople, F-74160, France Science, Daejeon 34113, Republic of Korea rsity, Seoul 02841, Republic of Korea University, Seoul 02447, South Korea 2 Systems, IBS, Pohang 37673, Republic of Korea 21; published 12 May 2021; corrected 11 August 2021) arch at the Institute for Basic Science is searching for vave resonators. We report the exclusion of the axion		
System Noise (T _{sys})	~ 1.1 K	mass range 10.7126-10.7186 µeV with near KI sensitivity and the range 10.16-11.37 µeV with abe This is the first axion search result in these ranges. It of less than 40 mK.	m-snifman-vanishtein-Zakharov (KSVZ) coupling out 9 times larger coupling at 90% confidence level. t is also the first with a resonator physical temperature		
Scan Rate (Arb.) $\alpha B^{4} V^{2} C^{2} O_{1} / T_{2}^{2}$	1	18	150		
2022-08-09	2022 17th PATF	RAS WORKSHOP	18		

	HEMT Run Phys. Rev. Lett. 126 (2021)	JPA Run On ArXiv, Will submit soon (Mr. Jinsu Kim <i>et al</i> .)	SC Run Re-scanning Now	
Frequency Range	2.457 – 2.749 GHz	2.457 – 2.749 GHz 2.27 – 2.30 GHz		
Magnetic Field (B)	7.2 T	7.2 T	6.95 T	
Near-Quantum-Noise Axion Dark Ma Jinsu Kim, ^{1,2} Ohjoon Kwon, ² Çağlar Matlashov, ² Sergey Uchaikin, ² Arjan Fere	tter Search at CAPP around 9.5 μ eV Kutlu, ^{1,2} Woohyun Chung, ^{2,*} Andrei dinand van Loo, ^{3,4} Yasunobu Nakamura, ⁴	1.12 L	1.5 L	
¹ Department of Physics, KAIST, ² Center for Axion and Precision Physics Research ³ RIKEN Center for Quantum Computing ⁴ Department of Applied Physics, The University of Tokyo, Bun	Ann, "** and Yannis K. Semertzichs" Daejeon 34141, Republic of Korea a (CAPP), IBS, Daejeon 34051, Republic of Korea (RQC), Wako, Saitama 351–0198, Japan Graduate School of Engineering, kuo-ku. Tokyo 113-8656, Japan	100,000	500,000	
(Dated: Ju (Dated: Ju We report the results of an axion dark matter s A flux-driven Josephson parametric amplifier (JI system noise temperature of as low as 200 mK among published axion cavity experiments with developed a two-stage scanning method which bo of two-photon coupling in a plausible model for magnitude higher in sensitivity than existing limit	search over an axion mass range of $9.39-9.51 \ \mu\text{eV}$. PA) was added to the cryogenic receiver chain. A was achieved, which is the lowest recorded noise phase-insensitive JPA operation. In addition, we osted the scan speed by 26%. As a result, a range the QCD axion was excluded with an order of ts.	0.45	0.51 – 0.65	
System Noise (T _{sys})	~ 1.1 K	~ 200 mK	~ 180 mK	
Scan Rate (Arb.)	1	18	150	
2022-08-09	2022 17th PATR	AS WORKSHOP	19	

	HEMT Run Phys. Rev. Lett. 126 (2021)	JPA Run On ArXiv, Will submit soon (Mr. Jinsu Kim <i>et al</i> .)	SC Run Re-scanning Now
Frequency Range	2.4	2.30 GHz	2.273 – 2.295 GHz
Magnetic Field (B)		.2 T	6.95 T
Volume (V)		12 L	1.5 L
Quality Factor (Q_0)		,000	500,000
Geometrical Factor (C)	0	45	0.51 – 0.65
System Noise (T _{sys})		mK	~ 180 mK
Scan Rate (Arb.) $\propto P^{4}V^{2}C^{2}O_{1}/T_{2}^{2}$	1	18	150
2022-08-09	2022 17th PATR	AS WORKSHOP	20

Tuning Mechanism

Simplified Tuning Simulation

0

2.40E+09

2.30E+09

2.20E+09

2.10E+09

2.00E+09

1.90E+09

1.80E+09

Resonant Frequency (Hz)

Brass

Top Plate

Cavity Inside

Josephson Parametric Amplifier (JPA)

- > JPA is Josephson junction based quantum-noise-limited amplifier
- CAPP Flux-driven JPA was developed in collaboration with Nakamura group at Univ. of Tokyo and RIKEN
- Operation range: 2.27 GHz 2.30 GHz
- > JPA was protected by two layer superconducting shield (shielding factor: roughly 1,500)

Josephson Parametric Amplifier (JPA)

- > JPA is Josephson junction based quantum-noise-limited amplifier
- CAPP Flux-driven JPA was developed in collaboration with Nakamura group at Univ. of Tokyo and RIKEN
- Operation range: 2.27 GHz 2.30 GHz
- > JPA was protected by two layer superconducting shield (shielding factor: roughly 1,500)

Josephson Parametric Amplifier (JPA)

- > JPA is Josephson junction based quantum-noise-limited amplifier
- CAPP Flux-driven JPA was developed in collaboration with Nakamura group at Univ. of Tokyo and RIKEN
- Operation range: 2.27 GHz 2.30 GHz
- > JPA was protected by two layer superconducting shield (shielding factor: roughly 1,500)

Superconducting Cavity Run Operation

> At 2.3 GHz for $g_{\gamma} = 0.99 \times g_{\gamma}^{KSVZ}$ axion

B ₀	V	С	Q ₀	β	SNR	η	T _{tot}
6.95 T	1.5 L	~ 0.6	430,000	~ 1.75	3.5	0.7	~ 180 mK

~ 0.6 MHz / day

- ➢ For 2272 − 2295 MHz (23 MHz), ~ 39days
 - 1st phase (2284 2295 MHz)
 - Oct 7 ~ Oct 16, 2021
 - 2nd phase (2284 2295 MHz)
 Oct 26 ~ Nov 4, 2021

- 3rd phase (2272 2284 MHz)
 - Nov 5 ~ Nov 26, 2021
- Re-scan
 - Jun 20 ~, 2022

Total 8077 spectra

Analysis

Analysis

Data & Exclusion Plot

History of Superconducting Cavity R&D

Generation	Material	Substrate	Volume [liters]	Frequency [GHz]	Q-factor	
1 st Con VBCO		Nija/	0.2	C 0	150,000 @ 8 T	
1ª Gen	TECO		0.3 6.9		330,000 @ 8 T	
2 nd Gen	GdBCO	Hastelloy	1.5	2.3	~ 500,000 @ 8 T	
3 rd Gen	EuBCO + APC	Hastelloy	1.5	2.2	4,500,000 @ 0 T Waiting for Magnet Test	
	EuBCO + APC	Hastelloy	0.2	5.4	~ 13,000,000 @ 8 T	

13 Million Q Factor Cavity at 8 T

13 Million Q Factor Cavity at 8 T

- > The result shows that HTS cavity can reach 10 times larger than axion quality factor $(\sim 10^6)$.
- If we use next generation cavities, the scan rate will be more than 50 times bigger than copper cavities.

> CAPP is also planning to construct 36 liter HTS cavity for CAPP-12TB.

2022-08-09

2022 17th PATRAS WORKSHOP

Summary

- Superconducting Cavity R&D at CAPP aims to enhance axion search with a high Q factor \geq cavity using superconductors.
- ReBCO is one of the most promising materials for realizing a high Q cavity in a high \geq magnetic field.
- CAPP successfully developed a half-million Q factor ReBCO cavity with a 2.3 GHz \geq resonance frequency working in an 8 T magnetic field.
- The physics data from the 2.3 GHz ReBCO cavity was successfully taken. \geq
- \geq CAPP-PACE team is now planning to finalize analysis and take rescan data. Stay Tuned!
- Recently, CAPP developed 13 M Q factor cavity. \geq
- Next generation cavities are waiting for the experiments. \geq
 - Plan for developing high-temperature superconducting cavity for 12 TB magnet ٠

Magnetic Field in a Superconducting Cavity

- Simulation Situation: Polygon Shell with 100 μm Perfect Superconductor
- $\Delta B_{avg}/B_{avg} \sim 10^{-4}$ even with over-estimated condition of shielding
- Actual Situation: 1 5 μm Superconducting Film & Non-Perfect Diamagnetism 2022-08-09 2022 17th PATRAS WORKSHOP

N Gaps Do Not Degrade Q_{TM010}

Bixaxially-Textured ReBCO

M. J. Lancaster, "Passive microwave device applications of HTS", Cambridge University Press (2006).

IEEE Trans. Appl. Supercond. 23 (2013) 6601205

- Biaxial texture is essential to avoid weak links.
 - Weak links at grain boundaries degrades surface resistance.
 - Biaxially-textured ReBCO films show low surface resistance at high magnetic field
 - Biaxially-textured ReBCO films show high depinning frequency.
- Many providers can produce biaxially-textured ReBCO film.

Bixaxially-Textured ReBCO

M. J. Lancaster, "Passive microwave device applications of HTS", Cambridge University Press (2006).

IEEE Trans. Appl. Supercond. 23 (2013) 6601205

- Biaxial texture is essential to avoid weak links.
 - Weak links at grain boundaries degrades surface resistance.
 - Biaxially-textured ReBCO films show low surface resistance at high magnetic field
 - Biaxially-textured ReBCO films show high depinning frequency.
- Many providers can produce biaxially-textured ReBCO film.

Bixaxially-Textured ReBCO

M. J. Lancaster, "Passive microwave device applications of HTS", Cambridge University Press (2006).

Table 1. Coated conductor architecture for the different providers. The different growth methods are pulsed laser deposition (PLD), double disordered REBCO layer by PLD (DD-PLD) reactive coevaporation by deposition and reaction (RCE-DR), metalorganic chemical vapor deposition (MOCVD) and electron-beam physical vapor deposition (EB-PVD).

any Pro	Rare-earth	Nano-inclusions	REBCO thickness (µm)	Growth method
Bruker	Y	BaZrO ₃	1.6	DD-PLC
Fujikura (AP	C) Gd	None (BaHfC	D₃) 1.8	PLD
Sunam	Gd	None	1.6	RCE-DR
SuperOx	Gd	None	0.9	PLD
SuperPower	Y,Gd	BaZrO ₃	1.5	MOCVD
Theva	Gd	None	3	EB-PVD
			SUST 32 (2019)	094006

Biaxial texture is essential to avoid weak links.

- Weak links at grain boundaries degrades surface resistance.
- Biaxially-textured ReBCO films show low surface resistance at high magnetic field
- Biaxially-textured ReBCO films show high depinning frequency.
- Many providers can produce biaxially-textured ReBCO film.

Various Deposition Method for ReBCO

Ion-Beam Assisted Deposition (IBAD)

Superconductors in the Power Grid, Elsevier (2015)

- Directly forming a biaxially-textured ReBCO film on the deeply concaved inner surface of the cavities is difficult.
- Can we make a cavity with ReBCO