17th Patras Workshop on Axions, WIMPs and WISPs

Center for Axion and Precision Physics Research

Preliminary results for DFSZ axion definitive searches at IBS-CAPP

ANDREW KUNWOO YI, PHD CANDIDATE

ON BEHALF OF THE CAPP-12TB EXPERIMENT

KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY AND IBS-CAPP AUGUST 8^{TH} , 2022

Table of Contents

A brief introduction to axions and the axion haloscope experiment

CAPP-12TB experiment overview and equipment

The data acquisition process and results

The Axion

The Strong CP Problem

The QCD Lagrangian has a *CP*-violating term $\mathcal{L}_{\overline{\theta}} = \frac{g^2}{32\pi^2} \bar{\theta} G_a^{\mu\nu} \tilde{G}_{a\mu\nu}$ Neutron EDM is not observed: $d_N \sim \bar{\theta} \frac{e}{m_N^2} \frac{m_u m_d}{m_u + m_d} \sim 10^{-16} \cdot \bar{\theta} e \text{ cm}$ Current limit: $|d_N| = (0.0 \pm 1.1_{\text{stat}} \pm 0.2_{\text{sys}}) \times 10^{-26} e \text{ cm} (\bar{\theta} \leq 10^{-10})$

Peccei-Quinn theory: Implements new U(1) symmetry

A $U(1)_{PQ}$ symmetry is introduced to dynamically eliminate all effects of CP-violation for all orders

Implies existence of pseudo-Goldstone boson, the axion

The axion is the result of the explicit determination of $\bar{\theta}$

Axions and Dark Matter

Axion Properties

Axion mass
$$m_a \approx 5.691(51) \left(\frac{10^9 \text{ GeV}}{f_a}\right) \text{ meV} (f_a: \text{ axion decay constant})$$

 $\mathcal{L}_{a\gamma\gamma} = \left(\frac{\alpha}{\pi} \frac{g_{\gamma}}{f_a}\right) a\vec{E} \cdot \vec{B} = -g_{a\gamma\gamma} a\vec{E} \cdot \vec{B}$

A strong magnetic field converts the axion into a photon which can be detected as a signal cavity experiments

Dark Matter

Evidence from galaxy rotation curves, etc.

Now accepted as part of ACDM model, constitutes 26.8% of energy budget

Candidates: WIMPs, axions, neutrinos, etc.

Axion Detection Using Microwave Cavity

Axion Resonant Cavity and Signal Power

The CAPP-12TB experiment uses the TM₀₁₀-like mode to maximize the signal power

C: Form factor, depends on internal electric field of mode and external magnetic field

Other factors: magnetic field (B_{avg}) , volume (V), loaded quality factor (Q_L) , frequency (ν) , antenna coupling (β)

$$C = \frac{\left| \int_{V} d^{3}x \vec{E} \cdot \vec{B} \right|^{2}}{B_{0}^{2} V \int_{V} d^{3}x \varepsilon_{r} \left| \vec{E} \right|^{2}}$$

Ordinary TM₀₁₀–like mode Form factor: 0.6

$$P_{\text{signal}} = 22.51 \text{ yW} \left(\frac{g_{\gamma}}{0.36}\right)^2 \left(\frac{B_{\text{avg}}}{10.31 \text{ T}}\right)^2 \left(\frac{V}{36.85 \text{ L}}\right) \left(\frac{C}{0.6}\right) \left(\frac{Q_L}{35000}\right) \left(\frac{\nu}{1.1 \text{ GHz}}\right) \left(\frac{\rho_a}{0.45 \text{ GeV/cc}}\right)$$
(when $\beta = C$

 g_{γ} : 0.36 (-0.97) for DFSZ (KSVZ) axions ρ_a : Axion density in galaxy halos (when p

The experiment also needs to consider scan rate

Scan Rate $\propto g_{\gamma}^4 B_0^4 V^2 C^2 Q_L T_S^{-2} \text{SNR}^{-2}$

 T_{S} : Total system noise temperature **SNR**: Target signal-to-noise ratio

CAPP-12TB Experiment Overview

The CAPP-12TB experiment is a **DFSZ-sensitive** axion haloscope search for the mass range $3.3 - 16.5 \mu eV (0.8 - 4.0 \text{ GHz})$

Dilution Refrigerator 1.3 mW cooling power @ 100 mK Reaches **25 mK with load @ 12 T**

Superconducting magnet Center field **12 T @ 4.2 K** Bore diameter of 320 mm

Resonant Cavity Copper tuning rod ID 272 mm, **Q**₀ ~ **100,000**

Josephson Parametric Amplifier Several JPAs within tuning range Noise temperature **100 – 200 mK**

Dilution Refrigerator

Wet type dilution fridge from Leiden Cryogenics (First arrived in July 2019)

The base temperature reached 5.4 mK without any load, and 22 mK when mounted

Superconducting Magnet

Magnet from Oxford Instruments

The magnet has a big bore with a diameter of 320 mm and stores approximately 5.6 MJ energy

First arrived in March 2020, assembled August 2020 (delayed due to COVID-19)

12 T shown in **Magnet (T)** for both driven (top) and persistent (bottom) mode

Reliquefier in operation (liquefaction rate is 80 L/day)

Superconducting Magnet

The dilution fridge was tested under the maximum magnetic field of 12 T in 2021

The cavity cools down to **25 mK at 12 T**: data acquisition began in March 2022

Magnet and fridge tested together

Cavity temperature at 12 T

The cavity reduces the thickness and increases height to maximize volume

The tuning mechanism uses a piezo that connects the tuning rod with a sapphire axle

Ultra Light Cavity Simulations

Frequency range: 1.02 – 1.185 GHz

Form factor: ~0.6

There are a few mode-crossing regions at the higher frequencies

Flux-driven Josephson Parametric Amplifiers

Josephson Parametric Amplifiers (JPAs) are used to amplify the raw power signal with low noise

The nonlinear current-dependent inductance of a Josephson junction L(I) -

$$L(I) = L_0 \left[1 + \frac{1}{2} \frac{I^2}{I_c^2} \right], L_0 = \frac{\Phi_0}{2\pi I_c}$$

Inductance of a SQUID depends from flux bias $\boldsymbol{\Phi}$

 $I_{C} = IC_{0}\cos(\pi \Phi/\Phi_{0})$

- amplification

Ic -critical current of the SQUID $\Phi 0$ - flux quantum, 2.069·10⁻¹⁵ Wb I - DC persistent current, created by DC flux

- frequency

adjustment

Flux-driven Josephson Parametric Amplifiers

Collaboration with University of Tokyo and RIKEN

SQUID

With the help of **IBS/CAPP QLNA Team**

Çağlar Kutlu, Jinmyeong Kim, Boris Ivanov, Sergey Uchaikin, Seonjeong Oh, Andrei Matlashov

University of Tokyo and RIKEN

Arjan van Loo, Prof. Y. Nakamura

RF Chain and JPA operation

Noise temperature (T_n) of full chain with current JPA (measured at 28 mK)

RF Chain schematic

Data Acquisition Process

The CAPP-12TB experiment has currently scanned 20 MHz for its first run

Data acquired from March 1st to March 18th, 2022 (10 kHz tuning frequency steps x 1981 runs)

Data taken with a digitizer, including auxiliary data (transmission, gain, temperature data, etc.)

5000 power spectra taken and averaged Baseline fit via Savitsky–Golay (SG) filter

Noise temperature at cavity resonance From noise power after total gain removal

Data Analysis

Pull distribution data from the grand spectrum (normalized power excess) of the physics run The SG filter reduces the width (sigma) of the gaussian distribution to ~0.8 due to correlations After correcting for correlations the statistics follow a standard normal gaussian distribution

Data Analysis - Simulation

Monte Carlo Simulation for the CAPP-12TB background was performed (10000 iterations)

An axion signal is input via software to measure loss in SNR with current data analysis methods

Simulation: The SNR efficiency of the SG filter and effects of rebinning combined ~ 80%

Comparison of signal in the grand spectrum

SG filter degrades SNR and reduces width of the signal

Data Analysis

After data analysis the current run excludes about 20 MHz for DFSZ axions

Summary & Future plans

All components of the experiment have progress and are currently integrated together

The CAPP-12TB cavity currently is configured to scan the 1.02 – 1.19 GHz with a 6 kg cavity

The superconducting magnet has a maximum magnetic field of 12 T and the dilution refrigerator load (cavity) reaches 25 mK in these conditions

The cavity signal is amplified with an RF chain that includes nearly quantum-noise-limited JPAs that operate within the tuning range

The CAPP-12TB experiment has taken 20 MHz (1.09 – 1.11 GHz) of data in its first results of the first phase, targeting DFSZ sensitivity

After the first phase (1.02 – 1.19 GHz), the CAPP-12TB experiment will increase its frequency range up to 4 GHz

The CAPP-12TB team: Andrew Kunwoo Yi, Saebyeok Ahn, ByeongRok Ko, Boris Ivanov, HeeSu Byun, Sergey Uchaikin, Ohjoon Kwon, Yannis K. Semertzidis