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High-mass ALPs — cosmologically excluded?
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The rationale for global fits

Simplistic: overlay 95% regions 1 Better: combine likelihoods —2In £
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m Overplotted limits may be inconsistent, less powerful

m Better: combine likelihoods + use “smart”
optimisers/samplers instead of grid or random scans?"2%¢

» Automatically captures the effect of additonal parameters
when projecting down to lower-dimensional plots


https://arxiv.org/abs/2012.09874

Overview

Global fits with GAMB| 70507908

Our ALP model and setup

Constraints and likelihoods

Results


https://arxiv.org/abs/1705.07908

Global fits

m We want to select the “best” models and estimate their
parameters using all available information

m [nformation = assumptions, experiments and
observations, theoretical reasoning, ...
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Global fits

m We want to select the “best” models and estimate their
parameters using all available information

m [nformation = assumptions, experiments and
observations, theoretical reasoning, ...

m Both Bayesian and frequentist analyses are based on the
composite likelihood function as a starting point

m |deally, this is done within an easily extendable,
consistent, modular software framework — GAMBIT



The GAMBIT framework

The user...

m defines a model
(collection of parameters),

m writes functions to
calculate observables,

m takes experimental
results and turns them
into likelihoods.



The GAMBIT framework

The user... GAMBIT takes care of...
m defines a model m the order in which all
(collection of parameters), elements are calculated,
m writes functions to m connecting external
calculate observables, software,
m takes experimental = communication with
results and turns them sampling algorithms,

into likelihoods.
= bookkeeping of

observables and
likelihoods.



The GAMBIT framework

m [nternally, GAMBIT “solves” the dependency tree of all
required module functions using graph theory

m Requested observables & likelihoods — dependencies
and (external) code requirements
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The GAMBIT framework

m [nternally, GAMBIT “solves” the dependency tree of all
required module functions using graph theory

m Requested observables & likelihoods — dependencies
and (external) code requirements

m Determines evaluation order, respecting rules
and module options imposed be the user

» Optimal evaluation order & consistency
of assumptions!

\ll-lmnnmnmrnrnmmm



The GAMBIT framework

m Easily extendable, modular software framework to
confront combined models with joint likelihood from
many experiments

m (Your) external codes can be easily integrated!


https://gambit.hepforge.org/pubs

The GAMBIT framework

m Easily extendable, modular software framework to
confront combined models with joint likelihood from
many experiments

m (Your) external codes can be easily integrated!

m Studies on SUSY models, WIMPs, scalar singlet, Higgs
portal, RHNs, cosmological neutrino mass limits, axion
models, Xenon1T excess, ...cAMBIT publication list

m Code on Github, statistical samples, likelihood values,
plotting tools for most studies available on Zenodo!

GitHub 22000


https://gambit.hepforge.org/pubs

Previous study - axions with preinflation PQ breaking

Axion-photon coupling logy (|gayq|/GeV ")
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Previous study - axions with preinflation PQ breaking

Axion-photon coupling logy (|gayq|/GeV ")
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® |ncl. many constraints, also Bayesian analysis to identify
“natural” mass ranges, abundances'™*0"%

m Drawback: prior dependence; improved now by
theory-informed priors on E/N from complete catalogue
of “theoretically preferred””*>%¥° KSVZ models*"*7
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The GAMBIT framework - models

Can extend “family tree” of ALP models from the previous
study™®®% to work with “CosmoBIt” extension?0%03286 200903287

GeneralALP
fa, Ma, Ga~, Gae, Gan, B, Tx, 0;

ConstantMassALP

DFSZAxion-II KSVZAxion

QCDAxion

DFSZAxion-I

10
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The GAMBIT framework - models

Can extend “family tree” of ALP models from the previous
study™®®% to work with “CosmoBIt” extension?0%03286 200903287

GeneralCosmoALP
fa, Ma, a~, Gae, gan, B, Tx, 0i, &, Tren

CosmoALP CosmoALP_gg_tau GeneralALP
Ma, Ca, &, ... Ma, Ta, &, - fa, Ma, Ga~, Gae, Gan, B, Tx, 0;
QCDAxion ConstantMassALP
DFSZAxion-I DFSZAxion-II KSVZAxion

m New params: abundance £ and reheating temperature Tyep

m Automatic parameter translation: can use pre-existing

axion likelihoods out of the box
10
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The ALP model

GeneralCosmoALP
8 model parameters:

fCly mOI gG’Yr 61 TXr eil 51 Treh

m Only interaction: coupling to photons via £  gg E-B

n
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The ALP model

GeneralCosmoALP
6 model parameters:

fa, Ma, Ga~, 0:, &, Tren

m Only interaction: coupling to photons via £  gg E-B
m Simple ALP: mq const.
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The ALP model

GeneralCosmoALP
4 model parameters:
Ma, Qaw, E, Treh

m Only interaction: coupling to photons via £  gg E-B

m Simple ALP: mq const.

m Thermal and realignment contributions to & but we focus
on irreducible freeze-in mechanism®"°

2
£~ ( Mg ) Tren Jay o—Ma/Teeh
50 MeV/ \ 5MeV ) \ 10710 Gey™"
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The ALP model

GeneralCosmoALP
3 model parameters:

mGI gG’Yr E

Only interaction: coupling to photons via £ o ga, E-B
Simple ALP: mq const.

Thermal and realignment contributions to £ but we focus
on irreducible freeze-in mechanism®"°

2
£~ ( Mg ) Tren Jay o—Ma/Teeh
50 MeV/ \ 5MeV ) \ 10710 Gey™"

Choose ¢ as free parameter (multi-component DM model),
fix Tren = 5MeV to ignore degeneracies

n
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The ALP model

CosmoALP_gg_tau
3 model parameters:
mGr Ta, 5

Only interaction: coupling to photons via £ o gq, E - B
Simple ALP: mq const.

Thermal and realignment contributions to £ but we focus
on irreducible freeze-in mechanism®m%

2
£~ ( Mg ) Tren Jay o—Ma/Teeh
50 MeV/ \ 5MeV ) \ 10710 Gey™

Choose ¢ as free parameter (multi-component DM model),
fix Tren = 5MeV to ignore degeneracies

» Parameters: mass mgq, lifetime 7, <+ gq, abundance ¢
n
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ALP DM from freeze-in
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m Precalculate and tabulate freeze-in contribution to
nonthermal abundance (&r) with micrOMEGAS
m Ensure consitently that £ > &g by invalidating points

otherwise
12



The cosmological model

m 6-parameter ACDM model: wy, we, Ho, Zre, As, Ns

m |n total 12 parameters: 3 ALP, 6 LCDM, 2 experimental
parameters, neutron lifetime
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The cosmological model

6-parameter ACDM model: wy, we, Ho, Zre, As, Ns

In total 12 parameters: 3 ALP, 6 LCDM, 2 experimental
parameters, neutron lifetime

Conventional wisdom: “can only modify cosmology before
BBN" (T ~ 01MeV, t ~ 3min)

Some scenarios are still feasible: sub-MeV DM can still be
active between BBN and CMB formation, self-interacting
DM, nonthermal DM

Can the ’Li problem™®*" be improved by ALPs?70m065?
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The cosmological model

6-parameter ACDM model: wy, we, Ho, Zre, As, Ns

In total 12 parameters: 3 ALP, 6 LCDM, 2 experimental
parameters, neutron lifetime

Conventional wisdom: “can only modify cosmology before
BBN" (T ~ 01MeV, t ~ 3min)

Some scenarios are still feasible: sub-MeV DM can still be
active between BBN and CMB formation, self-interacting
DM, nonthermal DM

Can the ’Li problem™3®5 be improved by ALPs?201065%
ROI: 0.01MeV < mq < 200 MeV; 10%s < 75 < 1085, i.e.
decays between BBN and CMB formation

13
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Constraints & likelihoods in target region

Cosmology

CMB anisotropies (modification of recombination history)
CMB spectral distortions (SDs; energy injection from ALPs)
BBN element abundances (photodisintegration)

ANeg, n, (photon injection/higher T,)

BAO (structure formation)

Astrophysics

m SN1987A missing gamma-ray burst (ALP decays), our
update of [1702.02964]

® HB vs RGB star counts (stellar evolution, cooling)

m Type-la SNe (Pantheon sample)

14
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Constraints & likelihoods in target region

Cosmology

= CMB anisotropies (modification of recombination history)
m CMB spectral distortions (SDs; energy injection from ALPS)
m BBN element abundances (photodisintegration)

Astrophysics

m SN1987A missing gamma-ray burst (ALP decays), our
update of [1702.02964]

» Not all constraints are equally relevant in this study
14
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ALP constraints from spectral distortions (SDs

Spectral distortion AT [10° Jy/st]
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arger-than-observed SDs

Total SD shape (from CLASS/MontePython) is significantly
more constraining than p or y SDs individually

Proposed future CMB missions (e.g. PIXIE) would give
orders of magnitude stronger constraints

15



Results — ALP limits
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Results — ALP limits
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Results — projected ALP limits

Can also easily plot the profile likelihood for other paramter
combinations and compare to individual constraints:
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Results — projected ALP limits

Can also easily plot the profile likelihood for other paramter
combinations and compare to individual constraints:

GAMBIT: CosmoBit
T T 117 |

GAMBIT: CosmoBit 10— 11 g» N1 987A
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No loopholes (&) for astro

Mostly cosmo constraints ]
constraints



On the best-fitting point

m We find a unique best-fitting point (¥¥) since ALPs can
improve agreement between predicted and observed
[D/H] ratio (photodisintegration of elements)
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On the best-fitting point

m We find a unique best-fitting point (¥¥) since ALPs can
improve agreement between predicted and observed
[D/H] ratio (photodisintegration of elements)

m However: very low significance < 1o; also does not help
with 7Li problem

m Bayesian analysis with two prior choices: ACDM+ALP not
preferred over ACDM (odds of 1:3 and 1:7)

» Not a hint for ALPs; they slightly improve the fit but
introduce too many new parameters



Summary

= Global-fitting frameworks (GAMBIT) can perform
powerful analyses in many parameter dimensions
consistently by including complementary constraints

m Heavy ALPs are still viable in cosmology ...
» . but cannot solve ’Li problem due to SD constraints

m | ook forward to future CMB missions, studying ALPs
with ALP-electron interactions, etc.

m Future SD missions can exclude our best-fitting
region around m, ~ 130 MeV, gg, ~ 3 x 107 GeV™
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Improvement of the fit
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Nested sampling runs (with Polychord)
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