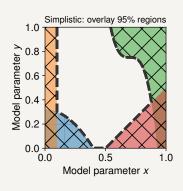
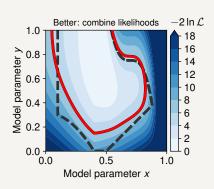


Cosmological constraints on decaying axion-like particles: a global analysis


C. Balázs, S. Bloor, T. E. Gonzalo, W. Handley, **Sebastian Hoof**, F. Kahlhoefer, M. Lecroq, D. J. E. 'Doddy' Marsh, J. J. Renk, P. Scott, and P. Stöcker; submitted to JCAP [arXiv:2205.13549]


17th Patras Workshop on Axions, WIMPs and WISPs Mainz, Germany 11 August 2022

High-mass ALPs – cosmologically excluded?

The rationale for global fits

- Overplotted limits may be inconsistent, less powerful
- Better: combine likelihoods + use "smart" optimisers/samplers instead of grid or random scans^{2012.09874}
- ➤ Automatically captures the effect of additional parameters when projecting down to lower-dimensional plots

Overview

■ Global fits with GAMBIT^{1705.07908}

Our ALP model and setup

Constraints and likelihoods

■ Results

Global fits

- We want to select the "best" models and estimate their parameters using all available information
- Information = assumptions, experiments and observations, theoretical reasoning, ...

Global fits

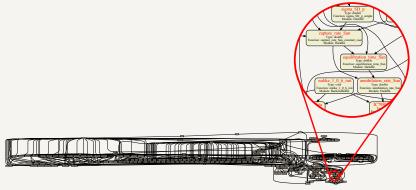
- We want to select the "best" models and estimate their parameters using all available information
- Information = assumptions, experiments and observations, theoretical reasoning, ...
- Both Bayesian and frequentist analyses are based on the composite likelihood function as a starting point

Global fits

- We want to select the "best" models and estimate their parameters using all available information
- Information = assumptions, experiments and observations, theoretical reasoning, ...
- Both Bayesian and frequentist analyses are based on the composite likelihood function as a starting point
- Ideally, this is done within an easily extendable, consistent, modular software framework → GAMBIT

The user...

- defines a model (collection of parameters),
- writes functions to calculate observables,
- takes experimental results and turns them into likelihoods.


The user...

- defines a model (collection of parameters),
- writes functions to calculate observables,
- takes experimental results and turns them into likelihoods.

GAMBIT takes care of...

- the order in which all elements are calculated,
- connecting external software,
- communication with sampling algorithms,
- bookkeeping of observables and likelihoods.

- Internally, GAMBIT "solves" the dependency tree of all required module functions using graph theory
- Requested observables & likelihoods → dependencies and (external) code requirements

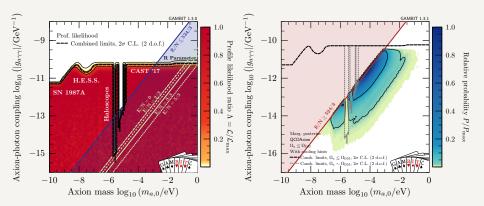
- Internally, GAMBIT "solves" the dependency tree of all required module functions using graph theory
- Requested observables & likelihoods → dependencies and (external) code requirements

 Determines evaluation order, respecting rules and module options imposed be the user

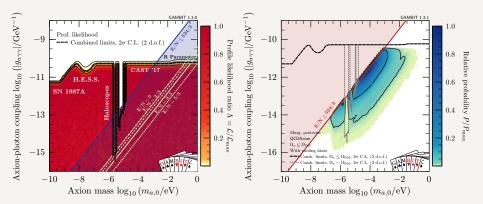
- Internally, GAMBIT "solves" the dependency tree of all required module functions using graph theory
- Requested observables & likelihoods → dependencies and (external) code requirements

 Determines evaluation order, respecting rules and module options imposed be the user

→ Optimal evaluation order & consistency of assumptions!

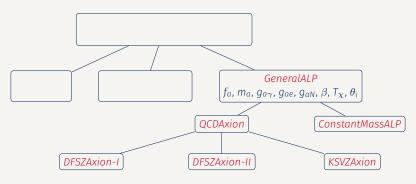

- Easily extendable, modular software framework to confront combined models with joint likelihood from many experiments
- (Your) external codes can be easily integrated!

- Easily extendable, modular software framework to confront combined models with joint likelihood from many experiments
- (Your) external codes can be easily integrated!
- Studies on SUSY models, WIMPs, scalar singlet, Higgs portal, RHNs, cosmological neutrino mass limits, axion models, Xenon1T excess, ... GAMBIT publication list
- Code on Github, statistical samples, likelihood values, plotting tools for most studies available on Zenodo!

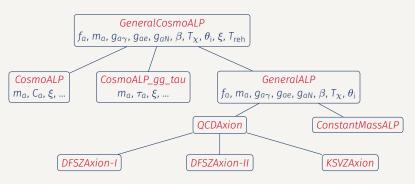


Previous study – axions with preinflation PQ breaking

 Incl. many constraints, also Bayesian analysis to identify "natural" mass ranges, abundances^{1810.07192}


Previous study – axions with preinflation PQ breaking

- Incl. many constraints, also Bayesian analysis to identify "natural" mass ranges, abundances 1810.07192
- Drawback: prior dependence; improved now by theory-informed priors on E/N from complete catalogue of "theoretically preferred" KSVZ models^{2107,12378}


The GAMBIT framework - models

Can extend "family tree" of ALP models from the previous study^{1810.07192} to work with "CosmoBit" extension^{2009.03286, 2009.03287}

The GAMBIT framework - models

Can extend "family tree" of ALP models from the previous study^{1810.07192} to work with "CosmoBit" extension^{2009,03286, 2009,03287}

- lacktriangle New params: abundance ξ and reheating temperature $T_{\rm reh}$
- Automatic parameter translation: can use pre-existing axion likelihoods out of the box

GeneralCosmoALP

8 model parameters:

$$f_a$$
, m_a , $g_{a\gamma}$, g_{ae} , g_{aN} , β , T_{χ} , θ_i , ξ , T_{reh}

lacksquare Only interaction: coupling to photons via $\mathcal{L} \propto g_{a\gamma} \, ec{E} \cdot ec{B}$

GeneralCosmoALP

6 model parameters:

 f_a , m_a , $g_{a\gamma}$, g_{ae} , g_{aN} , β , T_{χ} , θ_i , ξ , T_{reh}

- Only interaction: coupling to photons via $\mathcal{L} \propto g_{a\gamma} \, \vec{E} \cdot \vec{B}$
- Simple ALP: m_a const.

GeneralCosmoALP

4 model parameters:

$$f_a, m_a, g_{a\gamma}, g_{ae}, g_{aN}, \beta, T_{\chi}, \theta_i, \xi, T_{reh}$$

- lacksquare Only interaction: coupling to photons via $\mathcal{L} \propto g_{a\gamma} \, ec{E} \cdot ec{B}$
- Simple ALP: m_a const.
- Thermal and realignment contributions to ξ but we focus on irreducible freeze-in mechanism ^{0911.1120}

$$\xi_{\text{FI}} \sim \left(\frac{m_a}{50 \, \text{MeV}}\right) \left(\frac{T_{\text{reh}}}{5 \, \text{MeV}}\right) \left(\frac{g_{a\gamma}}{10^{-10} \, \text{GeV}^{-1}}\right)^2 \, \mathrm{e}^{-m_a/T_{\text{reh}}}$$

GeneralCosmoALP

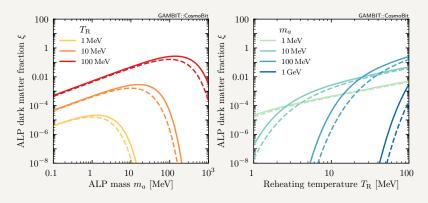
3 model parameters:

$$f_a, m_a, g_{a\gamma}, g_{ae}, g_{aN}, \beta, T_\chi, \theta_i, \xi, T_{reh}$$

- Only interaction: coupling to photons via $\mathcal{L} \propto g_{a\gamma} \, \vec{E} \cdot \vec{B}$
- Simple ALP: m_a const.
- Thermal and realignment contributions to ξ but we focus on irreducible freeze-in mechanism^{0911.1120}

$$\xi_{\text{FI}} \sim \left(\frac{m_a}{50\,\text{MeV}}\right) \left(\frac{T_{\text{reh}}}{5\,\text{MeV}}\right) \left(\frac{g_{a\gamma}}{10^{-10}\,\text{GeV}^{-1}}\right)^2 \,\mathrm{e}^{-m_a/T_{\text{reh}}}$$

• Choose ξ as free parameter (multi-component DM model), fix $T_{\text{reh}} = 5 \,\text{MeV}$ to ignore degeneracies


CosmoALP_gg_tau 3 model parameters: $f_a, m_a, \tau_a, g_{ae}, g_{aN}, \beta, T_\chi, \theta_i, \xi, T_{reh}$

- lacksquare Only interaction: coupling to photons via $\mathcal{L} \propto g_{a\gamma} \, ec{E} \cdot ec{B}$
- Simple ALP: m_a const.
- Thermal and realignment contributions to ξ but we focus on irreducible freeze-in mechanism ^{0911.1120}

$$\xi_{\text{FI}} \sim \left(\frac{m_a}{50 \, \text{MeV}}\right) \left(\frac{T_{\text{reh}}}{5 \, \text{MeV}}\right) \left(\frac{g_{a\gamma}}{10^{-10} \, \text{GeV}^{-1}}\right)^2 \, \mathrm{e}^{-m_a/T_{\text{reh}}}$$

- Choose ξ as free parameter (multi-component DM model), fix $T_{\text{reh}} = 5 \,\text{MeV}$ to ignore degeneracies
- ightharpoonup Parameters: mass m_a , lifetime $au_a \leftrightarrow g_{a\gamma}$, abundance ξ

ALP DM from freeze-in

- Precalculate and tabulate freeze-in contribution to nonthermal abundance ($\xi_{\rm FI}$) with micrOMEGAs
- Ensure consitently that $\xi \ge \xi_{\rm Fl}$ by invalidating points otherwise

- 6-parameter Λ CDM model: $\omega_{\rm b}$, $\omega_{\rm c}$, H_0 , $z_{\rm re}$, $A_{\rm s}$, $n_{\rm s}$
- *In total 12 parameters*: 3 ALP, 6 LCDM, 2 experimental parameters, neutron lifetime

- 6-parameter Λ CDM model: $\omega_{\rm b}$, $\omega_{\rm c}$, H_0 , $z_{\rm re}$, $A_{\rm s}$, $n_{\rm s}$
- In total 12 parameters: 3 ALP, 6 LCDM, 2 experimental parameters, neutron lifetime
- Conventional wisdom: "can only modify cosmology before BBN" ($T \sim 0.1$ MeV, $t \sim 3$ min)

- 6-parameter Λ CDM model: ω_b , ω_c , H_0 , Z_{re} , A_s , n_s
- In total 12 parameters: 3 ALP, 6 LCDM, 2 experimental parameters, neutron lifetime
- Conventional wisdom: "can only modify cosmology before BBN" ($T \sim 0.1$ MeV, $t \sim 3$ min)
- Some scenarios are still feasible: sub-MeV DM can still be active between BBN and CMB formation, self-interacting DM, nonthermal DM

- 6-parameter Λ CDM model: $\omega_{\rm b}$, $\omega_{\rm c}$, H_0 , $z_{\rm re}$, $A_{\rm s}$, $n_{\rm s}$
- *In total 12 parameters*: 3 ALP, 6 LCDM, 2 experimental parameters, neutron lifetime
- Conventional wisdom: "can only modify cosmology before BBN" ($T \sim 0.1$ MeV, $t \sim 3$ min)
- Some scenarios are still feasible: sub-MeV DM can still be active between BBN and CMB formation, self-interacting DM, nonthermal DM
- Can the ⁷Li problem^{1203,3551} be improved by ALPs?^{2011,06519}

- 6-parameter Λ CDM model: $\omega_{\rm b}$, $\omega_{\rm c}$, H_0 , $z_{\rm re}$, $A_{\rm s}$, $n_{\rm s}$
- In total 12 parameters: 3 ALP, 6 LCDM, 2 experimental parameters, neutron lifetime
- Conventional wisdom: "can only modify cosmology before BBN" ($T \sim 0.1 \, \text{MeV}$, $t \sim 3 \, \text{min}$)
- Some scenarios are still feasible: sub-MeV DM can still be active between BBN and CMB formation, self-interacting DM, nonthermal DM
- Can the ⁷Li problem^{1203,3551} be improved by ALPs?^{2011,06519}
- ROI: 0.01 MeV $< m_a <$ 200 MeV; 10⁴ s $< \tau_a <$ 10¹³ s, i.e. decays between BBN and CMB formation

Constraints & likelihoods in target region

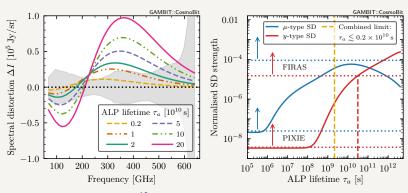
Cosmology

- CMB anisotropies (modification of recombination history)
- CMB spectral distortions (SDs; energy injection from ALPs)
- BBN element abundances (photodisintegration)
- $\Delta N_{\rm eff}$, $\eta_{\rm b}$ (photon injection/higher T_{γ})
- BAO (structure formation)

Astrophysics

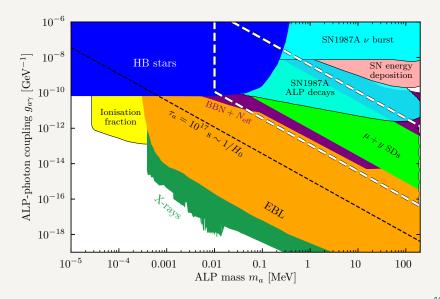
- SN1987A missing gamma-ray burst (ALP decays), our update of [1702.02964]
- HB vs RGB star counts (stellar evolution, cooling)
- Type-Ia SNe (Pantheon sample)

Constraints & likelihoods in target region

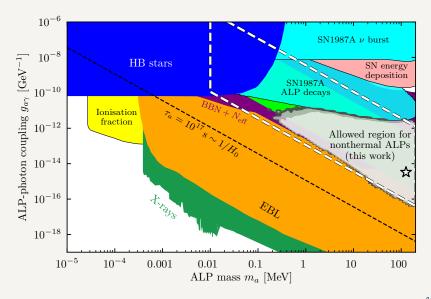

Cosmology

- CMB anisotropies (modification of recombination history)
- CMB spectral distortions (SDs; energy injection from ALPs)
- BBN element abundances (photodisintegration)
- ΔN_{eff} , η_{b} (photon injection/higher T_{γ})
- BAO (structure formation)

Astrophysics

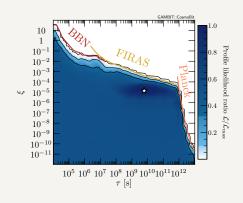

- SN1987A missing gamma-ray burst (ALP decays), our update of [1702.02964]
- HB vs RGB star counts (stellar evolution, cooling)
- Type-Ia SNe (Pantheon sample)
- >> Not all constraints are equally relevant in this study

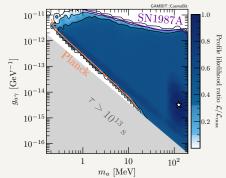
ALP constraints from spectral distortions (SDs)



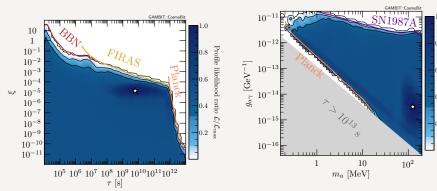
- lacktriangle ALPs with $au_a \lesssim 10^{10}\,\mathrm{s}$ induce larger-than-observed SDs
- lacktriangleright Total SD shape (from CLASS/MontePython) is significantly more constraining than μ or y SDs individually
- Proposed future CMB missions (e.g. PIXIE) would give orders of magnitude stronger constraints

Results - ALP limits




Results - ALP limits

Results - projected ALP limits


Can also easily plot the profile likelihood for other paramter combinations and compare to individual constraints:

Results – projected ALP limits

Can also easily plot the profile likelihood for other paramter combinations and compare to individual constraints:

Mostly cosmo constraints

No loopholes (ξ) for astro constraints

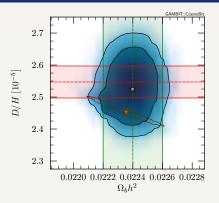
On the best-fitting point

 We find a unique best-fitting point (☆) since ALPs can improve agreement between predicted and observed
 [D/H] ratio (photodisintegration of elements)

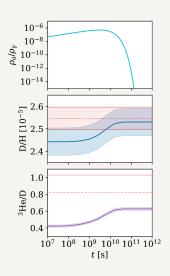
On the best-fitting point

- We find a unique best-fitting point (☆) since ALPs can improve agreement between predicted and observed
 [D/H] ratio (photodisintegration of elements)
- However: very low significance $< 1\sigma$; also does not help with 7 Li problem

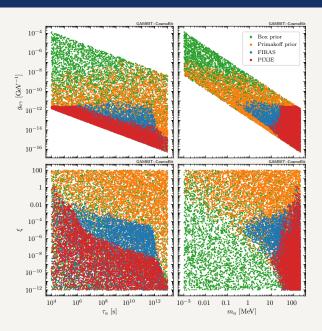
On the best-fitting point

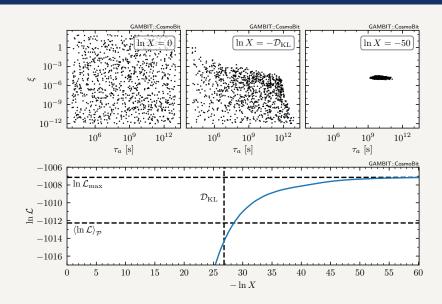

- We find a unique best-fitting point (☆) since ALPs can improve agreement between predicted and observed [D/H] ratio (photodisintegration of elements)
- However: very low significance $< 1\sigma$; also does not help with 7 Li problem
- Bayesian analysis with two prior choices: Λ CDM+ALP not preferred over Λ CDM (odds of 1:3 and 1:7)
- Not a hint for ALPs; they slightly improve the fit but introduce too many new parameters

Summary


- Global-fitting frameworks (GAMBIT) can perform powerful analyses in many parameter dimensions consistently by including complementary constraints
- Heavy ALPs are still viable in cosmology ...
- ... but cannot solve ⁷Li problem due to SD constraints
- Look forward to future CMB missions, studying ALPs with ALP-electron interactions, etc.
- Future SD missions can exclude our best-fitting region around $m_a \sim 130$ MeV, $q_{a\gamma} \sim 3 \times 10^{-15}$ GeV⁻¹

Backup slides


Improvement of the fit


- ALPs slightly ($< 1\sigma$) improve fit
- In Λ CDM: correlation between $\Omega_{\rm b}h^2$ & [D/H]; for Λ CDM+ALPs: no corr. due to photodisintegration

Bayesian results

Nested sampling runs (with Polychord)

