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• Design Considerations
• Run Plan
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• R&D/Future Phases

• ORGAN-Q
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• SMASH model
• Josephson Junction results
• High mass range relatively unexplored

• Broken down into Phases:
• Phase 1 - targeted 1 GHz scans ~month(s) scale
• Phase 2 - wider scans with enhanced sensitivity, broken into 5 GHz chunks, ~year 

scale
• Some auxiliary experiments
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ORGAN Introduction
• Critical research areas:
• Novel tunable resonators
• Superconductors
• Low noise amplification/photon counting readout
• Data acquisition and analysis
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Best version of each of these things is highly mass range dependent…
Begin to see some of the issues with going to, e.g. high or low frequencies
Particularly - VOLUME
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• Targeted scan around 15 GHz
• Commenced in 2021, now complete
• Tuning rod resonator, TM010 mode
• HEMT amplifier
• Zero-dead-time FFT on FPGA (from ANU)
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• Did eventually get it working…
• Iterations of design - increase  

alignment, tolerances etc TM010
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• ~3.5 weeks of data
• ~600 cavity positions
• ~5.2 K
• Followed HAYSTAC  

data analysis procedure
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https://doi.org/10.1103/PhysRevApplied.14.044051
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R&D: Novel Resonators 

• Prototype resonator built
• 4 sapphire wedges
• Investigating utilisation in Phase 1b
• Failing that, continue to analyse  

for Phase 2 (among other ideas)
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https://doi.org/10.1063/5.0023547
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R&D: Readout
• We want single photon counters in the ~10s of GHz range
• Not a lot…but a few options
• Currently exploring current-biased Josephson junctions
• Basic idea – photon kicks junction into voltage state

Figure borrowed from Leonid Kuzmin
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• Design is non-trivial
• Have some samples (from Chalmers) currently integrated on PCB
• Undergoing testing
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ORGAN Q
• New experiment around 6-10 GHz (TBD)
• Testbed for various technologies for 

implementation in future ORGAN Phases:
• Quantum amplifiers
• Superconducting coatings
• Various mechanical/design feature 

improvements
• Commence in 2022/2023 in larger bore 7 T 

Magnet
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ORGAN Low Frequency

• Where do you put a big re-entrant cavity?
• 3 T MRI Machine at Swinburne University
• Have approval to run experiment there
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Catriona Thomson, the University of Western Australia
Prof Mike Tobar, Dr Maxim Goryachev

DC HALOSCOPE “AC HALOSCOPE”
See Catriona Thomson’s Poster!
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See Igor Samsonov’s talk yesterday!



Search for HFGW with ORGAN
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See Mike Tobar’s talk Thursday!
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See https://doi.org/10.1016/j.dark.2019.100306

https://doi.org/10.1016/j.dark.2019.100306


Conclusion
• ORGAN

• High mass axion haloscope (15+ GHz)
• Run Plans

• Phase 1a completed 2021/2022
• Future phases commencing 2022
• Various avenues of R&D

• Auxiliary experiments
• ORGAN-Q
• ORGAN Low Frequency

• Other DM Experiments
• Scalar DM Searches
• Axion-Magnon Coupling
• UPLOAD
• Search for HFGW


