

Search for Weakly Interacting Particles with the FASER Experiment

Matthias Schott on behalf of the FASER Collaboration

Prof. Dr. Matthias Schott

The general idea

- Huge cross-sections at the LHC
 - N_{inel} ≈ 2.3×10¹⁶ inelastic pp scattering events for an integrated luminosity of 300 fb⁻¹
 - Extremely weakly-coupled and light new particles may be produced in sufficient numbers in the very forward region.
- Such particles may be highly collimated
 - typically produced within $\theta \sim \Lambda_{QCD}/E$
 - implies that ~100 m down-stream, such particles have only spread out ~10 cm in the transverse plane.

Physics Reach:Dark Photons and Dark Higgs

- Spin 1, couples weakly to SM fermions
 - Mainly from decays of light mesons, π, η, dark bremsstrahlung and hard scattering
 - Decay into electrons, muons, pions

- FASER has sensitivity to coupling strength of ~10⁻⁵ for dark photon.
 - Assumption: 0 background and 100% efficiency.
 - →FASER, LHCb and Belle2 are complementary and can cover most search region of m_{A'} < 1GeV

Physics Reach: Dark Photons and Dark Higgs

Physics Reach: Heavy Neutral Leptons and ALPs

- ALPs production via Primakoff process (γN→aN)
 - Assume only couplings to photons

- For ALP->γγ decay, magnetic field does not help separate closely spaced decay products
 - maybe pre-shower but challenging to resolve closely spaced (~1mm) high energy photons (>500 GeV)

FASER would be able to detect ALPs with m_a≈MeV and g_{aγγ}≈10⁻⁴ GeV⁻¹, as those would travel up to 350m and decay then into two photons, which can be detected.

Neutrinos at FASER

 Sensitive to new physics by measuring scattering cross sections and studying each flavor

The Detector

Silicon Tracker

- Based on ATLAS SCT modules:
 - 8 modules x 3 layers x 4 stations = 96 modules
 - Resolution: 17 um x 580 um
 - Good separation for two collimated tracks
 - Paper: NIMA (2022) 166825
- 4 stations commissioned and installed
 - 99.9% strips are active
 - Expected noise/gain are confirmed
 - Thermal performance as expected
 - Interlock/safety are carefully verified

SCT module

80 um pitch, 768 strips/side

Tracking layer 24 cm x 24 cm sensitive area

Page 8

40 mrad stereo angle

Scintillator and Calorimeter

- Four scintillator stations are commissioned and installed
 - > 99.9% efficiency, enough to trigger LLP decay inside the FASER detector
 - Confirmed by in situ measurements in 2018.
- Calorimeter based on LHCb ECAL module is also installed. One module has:
 - 12 cm x 12 cm (25 X0)
 - 66 layers of (2mm lead and 4mm scintillator)
 - Resolution ~1% for 1 TeV electron energy deposits

Trigger and Data acquisition

- Tracker: Custom General purpose I/O (GPIO) board
- Scintillator and Calorimeter: CAEN digitiser
- Trigger: Custom GPIO board
 - 500 Hz expected rate (dominant by muon flux, 1 Hz/cm2 for L=2×1034 cm-2s-1)
 - Clock and bunch taken from LHC

- Ethernet switch -> Servers on surface
- All components are installed and pass 1KHz test: 2021 JINST 16 P12028

FASER_v Emulsion/Tungsten

- Charged particle ionization recorded and can be amplified and fixed by chemical development of film
 - 770 emulsions interleaved with 1-mm-thick tungsten plates (1.1 tonnes)
 - Track position resolution ~50 nm
 - Angular resolution ~0.35 mrad
 - No Timing information
- Pilot detector (29 kg) exposed in TI18 for 1 month in 2018
 - Observed first collider ν candidates (2.7σ) with 12.2 fb-1 data!
 - Phys. ReV. D 104, L091101

Prof. Dr. M. Schott (Johannes Gutenberg University, Mainz)

Installation

- Full Installation Video
 - <u>https://faser.web.cern.ch/faser-installation</u>
- Detector Paper
 - arxiv: 2207.11427

- Current partial (30%) FASERv
 - Frequent exchange in Run 3
 - 1st full detector July 26 (TS1)
 - 2nd full detector Sep 13 (TS2)

Test-Beam Measurements

- Test Beam @ CERN H2 beam (2021)
 - Electrons(5-300GeV),muons (200 GeV) and pions (200 GeV)
 - 6 ECAL modules (inc. spares)
 - Along with IFT and preshower
 - Paper in preparation

First Data

- The tab
 - Currently data-taking
 - Saw first beam particles from recent 6.8 TeV beam optics tests First particles traversing full detector, including FwdVeto and IFT

Mock Data Challenge

- Ongoing Mock Data Challenge (MDC) to ensure readiness for data-taking
 - Test full production chain from generation all the way through to analysis
 - Representative background and signal processes have been produced
- Goal: demonstrate end-to-end analysis workflow
 - Finalise software: determine readiness & find missin pieces
 - In addition, jump start analysis effort already

A(100 MeV) → e⁺e⁻

- Upgrade for 2023/2024
 - Preshower scintillator will be replaced by hybrid pixel detector (100µm pitch, 130nm SiGe BiCMOS)
 - Upgrade to enable detecting ALPs $\rightarrow \gamma\gamma$ searches (2 photon separation by ~200 μ m)
 - Installation by the end of 2023, and datataking from 2024
 - Approved by CERN. See TDR CERN-LHCC-2022-006

Preshower Upgrade (2/2)

Prof. Dr. M. Schott (Johannes Gutenberg University, Mainz)

Alternative Concept developed in

2111.14939.pdf

Idea: Use Micromegas Detectors

Mainz

Summary

- FASER a new forward experiment at the LHC in the unused tunnel
 - Search for light weakly-coupled particles in MeV-GeV range
 - Probe TeV-energy neutrino in all flavors -First collider neutrino candidate is published!
- All detectors installed in TI12
- Great progress of test beam analysis and commissioning to verify expected performance
- Data Taking Ongoing
 - We are excited to get our first physics results

Prof. Dr. Matthias Schott