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Motivation: Axions

Well motivated extensions to SM

e QCD axion: solves strong CP problem

* Axions are quite generic in string models: “String axiverse”

* (Goldstone bosons, potential from nonperturbative breaking of symmetry

V(g) ~ m*f* |1 — cos (? 0

For QCD axion: m?f* = AECD
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* (Goldstone bosons, potential from nonperturbative breaking of symmetry

V(g) ~ m*f* |1 — cos é 0
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Motivation: Misalignment axion cosmology

» Example: Single axion with potential V(¢) ~ m*f* [1 — COS (?)]

» Misalignment: Initial angle randomly drawn from 6 € [—x, 7]
- Typical initial energy density p ~ m*f>

. Homogeneous equation of motion: 0?0 + 3H0,0 + m*sin® = 0
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Example: Single axion with potential V(¢) ~ m?*f~ [1 — COS (?)]

Misalignment: Initial angle randomly drawn from @ € [—x, 7]

- Typical initial energy density p ~ m*f>

Homogeneous equation of motion: 0°0 + 3H0,0 + m?*sin ® = 0

Field frozen until H ~ m, then begins damped oscillations

Late-time solution during radiation domination: ®(#) @Ot_3/4 cos(mt)
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Motivation: Misalignment axion cosmology

Damped pendulum
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Motivation: An axiverse

Many axions

M N ¢
Vg, ... dyn) = Z A? 1 — cos Z 62177.] + 0,
=1 J

J=1
4 4 =S
N o Aje
» Smooth spread in §; = roughly log-flat distribution of axion masses

« Number of axions depends on topology, can easily be ©O(100)



What are the dynamics and signatures
of multiple axions in an axiverse?



Concrete example

Focus on a single pair of coupled axions

Vidp, bs) = Aj| 1 = cos s +A§(1—005ﬁ)
fs L s
V(Os, 0,) = m*f* [(1 — cos(fg + HL)) + Ut F* (1 — COS HL)]

Short and Long refer to decay constants

Interesting new dynamics occur when & 2> 3 0.7<u<l1



Concrete example

Focus on a single pair of coupled axions

V(g pg) = A7 | 1 — cos %+% +A‘2‘(1—cosﬁ)

V(0s, 0;) = m?f? [(1 — cos(6¢ + HL)) + U F (1 — COS HL)

Short and Long refer to decay constants

Interesting new dynamics occur when & 2> 3




Homogeneous dynamics

Review: Uncoupled axions
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Autoresonance for Homogeneous Energy Densities
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Homogeneous dynamics

Review: Uncoupled axions
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Autoresonance for Homogeneous Energy Densities

* Each axion begins with energy ;
density p ~ O(m:f7) withi = S, L 1

e For axions with similar masses, <
both enter horizon and begin § s
redshifting at similar times s

QU

e |ate times: long axion will dominate
energy density by p; /pg ~ F*




Homogeneous dynamics

Coupled friendly axions

* Axions are akin to coupled pendulums

* Long axion has larger decay constant =— “more Iinertia”

e Can drive short axion
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Homogeneous dynamics

Coupled friendly axions

* Axions are akin to coupled pendulums

* Long axion has larger decay constant =— “more Iinertia”

e Can drive short axion

» 1 < 1:long axion has smaller frequency

 Coupled linear oscillators: resonance is required for significant energy transfer

* Short axion can adjust its frequency by adjusting its amplitude

* Adjust amplitude to achieve resonance and stay there: autoresonance
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Autoresonance for Homogeneous Energy Densities

\\ Note: Initial energy density
) hierarchy switches within the —_—
~ homogeneous approximation.
_ Inhomogeneities generally push “ ps
towards equipartition
N
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Homogeneous dynamlcs

Key takeaways

* Axion dynamics are simply those of
coupled nonlinear oscillators

* Analytically tractable

* Autoresonance can be quite generic
provided the two axions are similar

inmass (0.7 S u < 1)

O(1) of initial misalignment
angles result in autoresonance

log ps/pPL
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Implications for direct detection

Review

» Axions generically couple to SM suppressed by decay constant f

» Example: Axion-photon coupling & > — gzwngWFﬂv = 8, 0E - B

a
Sayy ™~ 4_7Tf

« Haloscope experiments sensitive to gg},},pax,-gn



Implications for direct detection

Review: Detecting a lonely axion

- Uncoupled axion with potential V(¢p) = m?*f*(1 — cos(¢/f))

®() 2 m 1/2 f 2
aniOn ~ 0.4
/2 10-17eV 1016 GeV




Implications for direct detection

Review: Detecting a lonely axion

- Uncoupled axion with potential V(¢p) = m?*f*(1 — cos(¢/f))

®() 2 m 1/2 f 2
aniOn ~ 0.4
/2 10-17eV 1016 GeV

 Naive misalignment: Axions with larger f have more energy density, but couple
more weakly to SM. These two effects cancel exactly

1/2 ® 1/4
g2, Far ~23 %1077 GeV~! ( 0 ) ( “ )
PHm /2 10=7eV

uncoupled




Implications for direct detection

Detecting a friendly axion pair

 Short axion is typically coupled more strongly to SM, but can receive O(1) of
long axion’s energy density
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Implications for direct detection

\
Detecting a friendly axion pair both worlds:

Best ot PO —_——

 Short axion is typically coupled more strongly to SM, but can receive O(1) of
long axion’s energy density

* Long axion can be slightly harder to see, but properly taking inhomogeneities
into account implies energy densities equalize for most &+ < 20

* | ook for long axion by resonant scanning over narrow mass range



Implications for direct detection

\
Detecting a friendly axion pair both worlds:

Best ot PO

 Short axion is typically coupled more strongly to SM, but can receive O(1) of
long axion’s energy density

* Long axion can be slightly harder to see, but properly taking inhomogeneities
into account implies energy densities equalize for most &+ < 20

* | ook for long axion by resonant scanning over narrow mass range

 Boost to visibility even if the friendly pair are only a subcomponent of DM




Attractive Subcomponent Direct Detection Prospects
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Beyond homogeneity

What about spatial perturbations?

» During autoresonance, O is large = strong self-interactions

 Parametric resonant growth in spatial perturbations of short axion

» Similar to large-misalignment scenarios [arXiv:1909.11665]



Beyond homogeneity

What about spatial perturbations?

» During autoresonance, O is large = strong self-interactions

 Parametric resonant growth in spatial perturbations of short axion

» Similar to large-misalignment scenarios [arXiv:1909.11665]
» Length of time spent in parametric resonance controlled by # = f; /f
« Small & : Axion overdensities grow, lead to DM substructure

« Large #: Overdensities grow nonperturbative, quench autoresonance



Beyond homogeneity

* Enhanced substructure on small
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Beyond homogeneity: Oscillon formation
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Summary

« (O(1) coincidences in mass and untuned initial conditions can lead to a new
type of resonant energy transfer (intrinsically nonlinear)

* Not all axions in an axiverse will have a friend, but a friendly pair can be
significantly more visibile to direct detection experiments

* |f DM is a friendly pair, can get visible boosts to small-scale substructure
 Dynamics and signatures are similar to large initial misalignment angles

 Probes of DM substructure can test many axion models
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Gravitational indirect detection

Gravitational Detection Prospects
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- Non-perturbative Structure Forms After pg = pr,
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