

XENON

First results from XENONnT

Daniel Wenz on behalf of the XENON collaboration <u>dwenz@uni-mainz.de</u> Patras Workshop 2022 JGU-Mainz

Bundesministerium für Bildung und Forschung

XENON Collaboration:

- 27 institutes
- 167 members

2

XENONnT experiment:

XENON1T XENONnT upgrades:

- Larger TPC and inner cryostat
- New purification and distillation system
- Additional water Cherenkov neutron-veto
- New calibration systems and techniques
- New analysis software package STRAXEN and triggerless data acquisition
- Improved cleanliness and radiopurity

XENONnT experiment:

- Larger TPC and inner cryostat
- New purification and distillation system
- Additional water Cherenkov neutron-veto
- New calibration systems and techniques
- New analysis software package STRAXEN and triggerless data acquisition
- Improved cleanliness and radiopurity

- 1.3 m x 1.5 m in height and diameter
- 494 3" PMTs (R11410-21) densely packed in a top and bottom array
- Cylinder walls made out of PTFE for high reflectivity
- 5 meshes to put electric fields and protect PMTs
- All materials carefully screened and selected

Liquid xenon purification

Liquid xenon purification

- Xenon purity important to drift electrons
- New liquid purification technique:
 - Replaceable filter units
 - Low radon emanation
 - 2 liters liquid / minute

18	h	for	entire
vol	ur	ne	

	Full drift time:	Electron lifetime:	Electron survival (@full drift length):
1T	0.67 ms	0.65 ms	30 %
nT	2.2 ms	>10 ms	86 % @ 15 ms

G. Plante, E. Aprile, J. Howlett, Y. Zhang arXiv:2205.07336 [physics.ins-det]

Radon distillation:

12

Radon distillation:

- Rn222 dominant background in 1T/nT
- Added radon distillation together with radon free magnetic-piston pumps

6

fit

 222 Rn α -decay

ate [µBq/kg]

þ

norm. res.

2.5

0.0

-2.5

- In SR0 operated in gas-mode
- Preliminary:

We are able to reach values < 1 µBq/kg for SR1 in liquid + gas mode

M. Murra, D. Schulte, C. Huhmann, C. Weinheimer <u>arXiv:2205.11492</u> [physics.ins-det]

XENONnT neutron-veto:

XENONnT neutron-veto:

- Added new water Cherenkov neutron-veto into muon-veto water tank
- 120 8" PMTs are watching the TPC cryostat
- Highly reflective ePTFE and ultra-pure water to maximize light collection efficiency
- Using tagged neutrons to calibrate the NR response as well as the neutron-veto tagging efficiency.

Preliminary tagging efficiency of $(67.5 \pm 2.9)\%$

 After SR0 loading with 0.2 % of (Gd₂(SO₄)₃ x 8(H₂O))

Expected tagging efficiency ~87 %

E. Aprile *et al* arXiv:2007.08796 JCAP11(2020)031

Calibration of XENONnT:

Calibration of XENONnT:

- Weekly PMT calibrations via LEDs
- Calibration of detector response and efficiency: ^{10⁷}
 - Use internal source: ³⁷Ar, ^{83m}Kr, ^{129m}Xe, ^{131m}Xe
 - Bias is used as systematic uncertainties
- Bi-weekly ^{83m}Kr and materials background α and γ are used for stability monitoring
- ^{83m}Kr used to validate drift field

Calibration of XENONnT:

- Calibration of ER response using ²²⁰Rn
 - Gives approximately flat spectrum
 - Used to validate cut acceptances and detector threshold
- Detector performance at low energies using ³⁷Ar
 - Mono-energetic line @2.8 keV
 - Allows to study performance with high resolution, due to high statistics
 See also the
 - Source was produced @TRIGA Mainz
- ER response model based on a combined fit

17

Calibration of NR response:

AmBe

N

- Calibration of the neutron-veto and TPC using tagged neutrons
 - AmBe emits coincident 4.4 MeV gamma

- Build tight 400 ns wide coincidence between TPC and neutron-veto
- Use single scatter NRs to calibrate neutron-veto tagging efficiency

Tritium-enhanced data:

- Tritium as possible explanation for 1T excess.
- Therefore, additional measures in nT:
 - 3 months of outgassing and cleaning procedure
 - All xenon processed through Kr-removal system
 - 3 weeks of GXe circulation
- 14.3 days of operation in tritium-enhanced mode:
 - Bypassing the getter
 - Conservative estimate for tritium enhancement of at least x10 (but could also be a factor x100)
 - No ³H excess found

SR0 data taking:

97.1 days of exposure between July 6 - Nov 11 2021

Backgrounds:

- NR and ER data below 20 keV blinded
- Initial constraints on backgrounds by external measurements and a data-driven coincidence model
- Verification of the background model on side band before unblinding

Component	Constraint	Fit
²¹⁴ Pb	(584, 1273)	
⁸⁵ Kr	90 ± 59	
Materials	266 ± 51	
¹³⁶ Xe	1537 <u>+</u> 56	
Solar neutrinos	297 ± 30	
¹²⁴ Xe	_	
AC	0.70 ± 0.04	
¹³³ Xe	_	
^{83m} Kr	—	

Backgrounds:

- NR and ER data below 20 keV blinded
- Initial constraints on backgrounds by external measurements and a data-driven coincidence model
- Verification of the background model on side band before unblinding

Component	Constraint	Fit
²¹⁴ Pb	(584, 1273)	980 <u>+</u> 120
⁸⁵ Kr	90 ± 59	91 ± 58
Materials	266 ± 51	267 ± 51
¹³⁶ Xe	1537 ± 56	1523 ± 54
Solar neutrinos	297 ± 30	298 <u>+</u> 29
¹²⁴ Xe	-	256 ± 28
AC	0.70 ± 0.04	0.71 ± 0.03
¹³³ Xe	-	163 ± 63
^{83m} Kr	-	80 ± 16

- 2nd order weak processes dominating spectral shape!
- $T_{1/2}^{2\nu ECEC} = \left(1.15 \pm 0.13_{stat} \pm 0.14_{sys}\right) \cdot 10^{22} \ yr$

(significance of ~10 sigma)

Discovery in XENON1T, now calibration source in nT!

- Factor x5 improved background compared to XENON1T
- No excess below 5 keV found
 - 8.6σ exclusion of XENON1T-size peak

E. Aprile *et al* Search for New Physics in Electronic Recoil Data from XENONnT arXiv:2207.11330

- Axion signal includes axio-electric and reverse Primakoff effect
- Improved constraints on the axiongamma, axion-electron and axionnucleon couplings
- Upper limit on the ⁵⁷Fe solar axion rate

- Put constraints on new physics
- No peak-like signals as expected from axion like particles or dark photons

• New constraints on neutrino-magnetic moment:

• $\mu_{\nu} < 6.3 \times 10^{-12} \mu_B$

Outlook and conclusion:

 XENONnT achieves excellent background levels and xenon purity!

[PE]

- New subsystems work as expected
- ER analysis disfavors a XENON1T like S excess, but puts new constraints on different dark matter models
- NR unblinding and WIMP analysis ongoing expect also here new results soon!

Is it a Bird?... Is it a Plane? No it's

- Joining effort and expertise between **XENON, LZ and DARWIN**
- See xlzd.org

7

XLZD meeting at Karlsruhe

XLZD white paper https://arxiv.org/abs/2203.02309

LZ status Wednesday 11:10

DARWIN status Friday 11:10

Back-up:

The XENON evolution:

XENON10	XENON100	XENON1T	XENONnT	
2005-2007	2008-2016	2012-2019	2020-2026	
14 kg Xe target	62 kg Xe target	2 t Xe target	~6 t Xe target, 8.6 t total mass	
~10 ⁻⁴³ cm ²	~10 ⁻⁴⁵ cm ²	4.10 ⁻⁴⁷ cm ²	1.4.10 ⁻⁴⁸ cm ² (projected for 20 t-y exposure)	(Flea)
~2M background ER / (keV· t·y)	1800 background ER / (keV- t-y)	82 background ER / (keV- t-y)	16.1 background ER / (keV· t·y)	

Scintillation #2 signal (S2)

- Electrons from ionized Xe⁺ drift upwards between anode and gate
- Extraction from LXe into GXe by higher field
- Electroluminescence yields S2 which is prop. to number of e⁻
- Signals O(100 pe 100000 pe)

Scintillation #1 signal (S1)

- Excited Xe atoms form excimers Xe₂*
- Excimers deexcite via emission of VUV-photons (178 nm)
- Signals O(3 pe 1000 pe)

Calibration of detector threshold and acceptance:

- Detector threshold estimate using a data and a simulation driven method
 - Threshold driven by a 3-fold PMT coincidence requirement for S1 signals
 - Simulation of full waveforms which are analyzed with the same processing framework
 - Data-driven uses higher energetic peaks to sample toy peaks.
- Average data-quality cut acceptance ~86 %

Detector uniformity and electric field validation:

- ^{83m}Kr, decays slow enough to be diffused uniformly over the LXe volume.
 - Used to calibrate position dependent light collection efficiencies for S1/S2
 - To calibrate for field distortions in the position reconstruction
 - Validate COMSOL field simulation by comparing its 32.1 keV and 9.4 keV signal

Detector stability:

- Light and charge yield monitoring using background source and bi-weekly ^{83m}Kr calibrations
 - Light yield stability ~1 %
 - Charge yield stability ~1.9 %

