

Gulden (Joule) Othman for the ALPS II collaboration **University of Hamburg**

17th PATRAS Workshop 2022, Mainz

Motivation for Light Shining through Walls (LSW) Experiments

- Extensive observational evidence for the existence of dark matter
 - Axion-like particles (ALPs) can be a dark matter candidate
- LSW experiments can search for ALPs in a model-independent way
- Test astrophysical observations
 - Stellar cooling
 - TeV transparency

ALP coupling to photons

 \mathcal{A}

ALP decay

Astrophysics and cosmology

Status of the ALPS II Experiment | PATRAS 2022 | 09 August, 2022

Haloscopes Helioscopes

Astrophysics and cosmology

Haloscopes Helioscopes

Status of the ALPS II Experiment | PATRAS 2022 | 09 August, 2022

Light Shining Through Walls

Inverse Sikivie effect

- $B \rightarrow Magnetic field strength$
- $L \rightarrow$ Length in magnetic field region

Light Shining Through Walls

 $\mathscr{P}_i \rightarrow \text{laser power}$ $\omega \rightarrow$ laser energy $\tau \rightarrow$ measurement time

Status of the ALPS II Experiment | PATRAS 2022 | 09 August, 2022

Germany, US, UK

 $\beta_{P(R)} \rightarrow$ Power buildup in production (regeneration)

- $\mathcal{P}_i \rightarrow \text{laser power}$
- $\omega \rightarrow \text{laser energy}$
- $\tau \rightarrow$ measurement time

 $N_{\gamma} = \frac{1}{16} (g_{a\gamma} BL)$

Graphic from Katharina-Sophie Isleif

 $\boldsymbol{\omega}$

Graphic from Katharina-Sophie Isleif

$$N_{\gamma} = \frac{1}{16} (g_{a\gamma}BL)^4 \frac{\mathscr{P}_i}{\omega} \beta_P \beta_P$$

Using 24 straightened HERA magnets

Status of the ALPS II Experiment | PATRAS 2022 | 09 August, 2022

Graphic from Katharina-Sophie Isleif

$$N_{\gamma} = \frac{1}{16} (g_{a\gamma} BL)^4 \frac{\mathscr{P}_i}{\omega} \beta_P \beta_I$$

- Using 24 straightened HERA magnets
- Fabry-Perot resonators in production and regeneration region

Graphic from Katharina-Sophie Isleif

 $-\frac{i}{\beta_P}\beta_R \tau$ $N_{\gamma} = \frac{1}{16} (g_{a\gamma} BL)^4$

- 150 kW \rightarrow 10⁻²⁴ W (~1 photon/day)

Status of the ALPS II Experiment | PATRAS 2022 | 09 August, 2022

$$N_{\gamma} = \frac{1}{16} (g_{a\gamma} BL)^4 \frac{\mathscr{P}_i}{\omega} \beta_P \beta_P$$

 $g_{a\gamma} \sim 2 \times 10^{-11} GeV^{-1}$

ALPS II- Heterodyne

Looking for 5-10-24 W @ 1064 nm

Option 1: heterodyne sensing

- Mix weak signal with a frequency f shifted local oscillator → beat note signal
- Detection of a photon flux corresponding to 5·10⁻²¹ W demonstrated.
- Sensitivity of 10⁻²⁴ W demonstrated.
- First detecting scheme to be used in ALPS II

"Coherent detection of ultraweak electromagnetic fields", Z. Bush et al., Phys. Rev. D 99, 022001 (2019)

ALPS II- Transition Edge Sensor

Looking for 5-10-24 W @ 1064 nm

Option 2: photon counting

Using a superconducting transition edge sensor (TES) operated at about 100 mK.

Low dark counts ($6.9^{+5.18}_{-2.93} \cdot 10^{-6}$ Hz, 95% CL) shown

LSW Experiments | 01 August, 2022

Gulden (Joule) Ot

Slide from Friederike Januschek

Option 2: photon counting

Using a superconducting transition edge sensor (TES) operated at about 100 mK.

Manuel Meyer

Rikhav Shah

ALPS II Sensitivity

- $g_{a\gamma} < 2 \times 10^{-11} GeV^{-1}$
 - $m_a < 0.1 \text{ meV}$
 - Increase sensitivity > 3 orders of magnitude over **OSQAR, ALPS I**
 - Factor of 3 over CAST
- Begin to probe astrophysical phenomena in model- \bullet independent way
 - Stellar cooling \bullet
 - TeV transparency
- Early science run with limited sensitivity later this year \bullet

[GeV $\overline{\delta}$ 10⁻¹¹

github.com/cajohare/AxionLimits/

High-Powered Laser

Amplified Non Planar Ring Oscillator (NPRO)

- Demonstrated over 60 W of power at 1064 nm
- > 90% of power in fundamental mode

Magnet Strings

- 24 HERA dipole magnets
- October 2020: Magnets installed and aligned
- March 2022: Magnet strings run successfully at full current
 - 5.7 kA, 5.3 T

Status of the ALPS II Experiment | PATRAS 2022 | 09 August, 2022

Photo by Heiner Müller-Elsner

Regeneration Cavity (RC)

Longest storage time Fabry Perot cavity ever!

- Length: 124.6m, FSR: 1.22 MHz
- Storage time: 6.75 ms (*world record*)
- Power build up factor: $\beta \sim 7000$

Status of the ALPS II Experiment | PATRAS 2022 | 09 August, 2022

Talk by Aaron Spector IDM 2022

ALPS II RC Cavity Storage Time

First Science Run Before the end of the year!

Commissioning optical setup without production cavity

- Simpler control scheme
- Stronger signals for stray light hunting

Status of the ALPS II Experiment | PATRAS 2022 | 09 August, 2022

- Input 50 W laser power
- Regeneration cavity in place
 - Factor of ~350 improvement over ALPS I sensitivity

$$\rightarrow g_{a\gamma} \sim 2 \times 10^{-10} GeV^{-1}$$

Graphic from Katharina-Sophie Isleif

Preliminary ALPS II Schedule

Status of the ALPS II Experiment | PATRAS 2022 | 09 August, 2022

Preliminary ALPS II Schedule

Summary and Outlook

- ALPS II is a LSW experiment that will improve the limits for g_{av} by over 3 orders of magnitude over OSQAR, ALPS I
- Begin checking astrophysical observations in a model-independent way
- First science run before the end of this year $\rightarrow g_{a\nu} \sim 2 \times 10^{-10} \ GeV^{-1}$
- Full sensitivity run after upgrades around Fall 2023 $\rightarrow g_{av} \sim 2 \times 10^{-11} GeV^{-1}$

Thank you!

Backup slides

Heterodyne Interferometry Measuring single photon power levels

Measuring the interference beatnote

- Signal field optically mixed with Local Oscillator (LO) laser \bullet
 - Interference beatnote in power at the difference frequency
 - Photon counting stats -> Shot noise
- Demodulate power measurement at difference frequency \bullet

DESY. Approaching a first science run with ALPS II | Aaron Spector | IDM 2022 | Vienna, Austria | July 18-22, 2022

$$P(t) = P_{\rm LO} + P_{\rm S} + 2\sqrt{P_{\rm LO}P_{\rm S}}\cos\left(\Delta\omega t + \frac{1}{2}\right)$$

$$Z(N) = \frac{(\sum_{n=1}^{N} I[n])^2 + (\sum_{n=1}^{N} Q[n])^2}{N^2}$$

$$I[n] = x_{\text{sig}}[n] \times \cos\left(2\pi \frac{f_d}{f_s}n\right)$$
$$Q[n] = x_{\text{sig}}[n] \times \sin\left(2\pi \frac{f_d}{f_s}n\right)$$

Heterodyne Signal

Measuring single photon power levels

SNR increases with integration time

- Expectation value from shot noise \bullet decreases with integration time
- Expectation value from signal is \bullet constant in time

PHYSICAL REVIEW D 99, 022001 (2019) **Coherent detection of ultraweak electromagnetic fields** Zachary R. Bush,¹ Simon Barke,¹ Harold Hollis,¹ Aaron D. Spector,² Ayman Hallal,¹ Giuseppe Messineo,¹ D. B. Tanner,¹ and Guido Mueller¹ ¹Department of Physics, University of Florida, P.O. Box 118440, Gainesville, Florida 32611, USA ²Deutsches Elektronen-Synchrotron (DESY), Notkestrae 85, D-22607 Hamburg, Germany (Received 3 April 2018; published 2 January 2019)

Z(N)Х second per Photons

Heterodyne Detection

Measuring single photon power levels

Regenerated Field Mixed with Local Oscillator Laser (LO)

- LO must be phase coherent with regenerated field
 - Information transfer via COB
 - Tracks OPL changes between cavity mirrors \bullet
 - Suppress stray light from PC \bullet
- Interference beatnote measured by photodetector ullet

DESY. Approaching a first science run with ALPS II | Aaron Spector | IDM 2022 | Vienna, Austria | July 18-22, 2022

36

Local Oscillator

Central Optical Bench (COB) Maintaining dual resonance and spatial overlap

Ensure PC light is resonant with RC

- Interference beatnotes transfer phase \bullet information between PC and RC
- System cannot allow 'light leaks' \bullet

DESY. Approaching a first science run with ALPS II | Aaron Spector | IDM 2022 | Vienna, Austria | July 18-22, 2022

ALPS II Optics: Current Work

Unbending the HERA Magnets Preparing HERA dipoles for ALPS II

Magnets must be unbent

- Formerly used in HERA arcs
- Straightened for sufficient aperture \bullet

DESY. | Approaching a first science run with ALPS II | Aaron Spector | IDM 2022 | Vienna, Austria | July 18-22, 2022

Position along the beam pipe

