
Results

Feature extraction

More information: 
https://axion-alp-dm.github.io/ 

A first application of machine and deep learning 
for background rejection in the ALPS II TES 
detector

Introduction 
▪ Axions and axion-like particles (ALPs) are hypothetical particles predicted in extensions 

of the Standard Model [e.g., 1] 
▪ Axions could explain the strong CP problem in QCD [2] and axions and ALPs are 

candidates for cold dark matter [3] 
▪ The ALPS II experiment [e.g., 4] aims to produce and subsequently detect these particles 

using the “light-shining-through-a-wall” technique (see Fig. 1, see G. Othman’s overview 
talk on Tuesday 11.30am) 

▪ ALPS II will use a transition edge sensor  (TES), a single photon detector that can achieve 
high quantum efficiencies and energy resolution [5], see Fig. 2 

▪ To significantly detect an expected signal rate of   in a 20 day 

measurement, we need to achieve extremely low  background rates  
▪ Here, we investigate the performance of machine learning (ML) and deep learning (DL) 

classification algorithms to discriminate signal and background events recorded with a 
test setup of the TES detector.

∼ 1photon day−1

≲ 10−5 Hz

Fig. 1: schematic layout of the ALPS II detector (top) and the Feynman diagram for photon-
ALP conversion (bottom). Taken from [4].
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Fig. 2: The TES detector system for the ALPS II experiment 

Training Data Set  
▪ Data collected in a test setup of the TES detector: background events were 

collected in  while no optical fiber was connected to the TES [5] 
▪ Fake signals generated by connecting a 1064nm laser to the TES  
▪ Each event consists of a voltage vs current time line measured with the TES 

and SQUID setup. Events were triggered and recorded once the amplitude 
reached < -20 mV. Each trigger window is 200  long (see Fig. 3, left) 

▪ After initial data cleaning: 39,580 background and 1,066 signal events 

T ∼ 518 hours

μs

Training OF Classifiers on Extracted 
Features 

▪ Each time line fit with an exponential rise and decay function [5] 
▪ Best-fit parameters (amplitude, rise and decay times, constant offset), pulse integral and  

value of the fit are recorded in a feature vector  (see Fig. 3 upper central panels) 

▪  is transformed  using principal component analysis (PCA) and split into 80% training and 
20% test data 

▪ Two ML classifiers are tested: random forests (RF) and a multilayer perceptron (MLP) 
▪ Hyper-parameters of the classifiers are optimized over parameter grids using  cross 

validation with  on the training set using again a 80%-20% split 

▪ Best hyper-parameters selected that optimize the detection significance  [6]:  
 

 

▪  is the detector efficiency,  is the analysis efficiency to correctly classify signal 

evens,  is the background rate from mis-identified background events, and  is the signal 
rate that depends on the photon-ALP coupling  

▪ Classifier with best hyper-parameters re-trained on entire training set
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Preliminary Training of CNN on Time 
series Data 

▪ We  also test the performance of convolutional neural networks (CNN) trained on the time 
series data itself, which eliminates the need for feature extraction 

▪ CNNs have been found to perform very well for time-series classification [7] 
▪ Only pre-processing step: time series data is  transformed before training and 

downsampled by factor 4  
▪ CNN architecture [following 7]: 2 convolutions with kernel size 11 and 16 filters, followed 

each by batch normalization and ReLU activation. After convolution, global average pooling 
performed.  

▪ CNN also provides Class Activation Map (CAM) which shows which parts of time series are 
most important for classification (see Fig. 3 and [7]) 

z

Preliminary Results 
▪ Classifiers used here have advantage over cut-based analysis: each event is assigned 

probability of being a true light signal 
▪ One can tune a threshold  for this probability above which events are classified as true light 

signals to achieve best significance 
▪ Table 1 shows mean values and standard deviations for  from  cross validation 

for example values of 
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Discussion & Outlook 
▪ Both feature-based classifiers and CNNs achieve a detection significance and 

background rate comparable or better than a simple cut based analysis used in [5] 
▪ Heavily imbalanced data set with ratio 40∶1 of background vs light events makes 

training of classifiers challenging, more data taking with updated experimental 
setup in progress 

▪ Larger training data set should also improve errors on performance metrics 
▪ CNN on time lines performs worst in our test, might suffer most from imbalanced 

data set and electrical noise in time lines 
▪ Results are encouraging: promising to use ML and DL algorithms for signal and 

background discrimination when fiber is connected to TES

∼

Threshold 
ξ Signal efficiency Background rate 

(µHz)
Detection 

significance  (𝛔)

Cut based analysis [5] — 0.898 6.9 4.88

RF 0.862 0.66 ± 0.15 2.16 ± 2.02 6.04 ± 1.50 

MLP 0.944 0.90 ± 0.07 5.93 ± 5.23 6.51 ± 2.47

CNN 0.974 0.42 ± 0.18 < 8.54 4.94 ± 2.56

Optical fiber

CNN Architecture

Fig 3: Schematic view of the performed analysis.  In the central part the top row corresponds to ML using 
extracted features, whereas in the bottom row, the raw data is used. In the latter case we can generate class 

activation maps (CAMs) to visualize which parts of the time series are most important for correct classification.

Transition EDGE Sensor for the 
ALPS II Experiment 

Data: Signal

Data: Background

PCA

Random Forest
Multi-layer 
Perceptron

Classifier Training

CAM Examples

16 16

convolution

global average  
pooling 

fully connected
channels

time

1

2 output  
classes

input  
time line

I’m happy to discuss with you! 
manuel.meyer@uni-hamburg.de 
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