SUPPOX

A superconducting axion search experiment @ Mainz

Kristof Schmieden, Tim Schneemann, Matthias Schott With invaluable help from the RADES group, in particular Jessica Golm

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Why Axions?

- Axions are very likeable
 - Very polpular
 - (Presently out of stock)

[https://www.particlezoo.net/collections/all]

Why Axions?

- Axions are very likeable
 - Very polpular
 - (Presently out of stock)

Clean up the strong CP problem

- Axion (-like particles) appear in many BSM theories!
 - String theories, GUT, SUSY
- Axions can be dark matter

[https://www.particlezoo.net/collections/all]

Axions as Dark Matter

- Axions follow Bose-Einstein statistics
- Ensemble of light axions: macroscopic, wave-like behaviour
 - Acts as cold dark matter
- $m_a > 10^{-22} \text{ eV}$

otherwise no structure formation possible

• $m_a < 2 \cdot 10^{-2} \text{ eV}$ from neutrino flux of SN1987A

Axions as Dark Matter

- Axions follow Bose-Einstein statistics
- Ensemble of light axions: macroscopic, wave-like behaviour
 - Acts as cold dark matter
- $m_a > 10^{-22} eV$

otherwise no structure formation possible

- $m_a < 2 \cdot 10^{-2} \text{ eV}$ from neutrino flux of SN1987A
- Assuming all of DM is QCD Axions: Predict it's mass
 - Depends on production mechanism
 - Generation in strings and domain walls
 - Computationally difficult:
 - no ab initio calculation possible
 - model dependent results

Axions as Dark Matter

- Axions follow Bose-Einstein statistics
- Ensemble of light axions: macroscopic, wave-like behaviour
 - Acts as cold dark matter
- $m_a > 10^{-22} eV$

otherwise no structure formation possible

- $m_a < 2 \cdot 10^{-2} \text{ eV}$ from neutrino flux of SN1987A
- Assuming all of DM is QCD Axions: Predict it's mass
 - Depends on production mechanism
 - Generation in strings and domain walls
 - Computationally difficult:
 - no ab initio calculation possible
 - model dependent results

Physics results from the CAST-RADES run published

A RADES

experiment

SUPAC

J. High Energ. Phys. 2021, 75 (2021)

- Axion conversion to photons in B-field
- Using RF resonators to enhance the signal
- Sensitivity: ~µeV meV
- Several magnitudes in frequency
 - Various designs of resonators & DAQ
 - Many experiments!

Typ signal power: 10-24W

- Axion conversion to photons in B-field
- Using RF resonators to enhance the signal
- Sensitivity: ~µeV meV
- Several magnitudes in frequency
 - Various designs of resonators & DAQ
 - Many experiments!

Typ signal power: 10-24W

A RADES experiment

4

[S(

- Axion conversion to photons in B-field
- Using RF resonators to enhance the signal
- Sensitivity: ~µeV meV
- Several magnitudes in frequency
 - Various designs of resonators & DAQ
 - Many experiments!

Typ signal power: 10-24W

A RADES experiment

4

[S(

- Up to 14T magnets in use
- Up to 20T envisioned
- Larger fields smaller volume

- Depends on cavity material:
 - High purity copper: ~5.10⁴
 - Superconducting: difficult in high magnetic field! • Target: 10^{6}

- Volume limited by
 - Magnet aperture
 - Resonance frequency
 - Tuning elements

A RADES {SUPA⁰ experiment

- Demonstrated: 3.10⁵ (CAPP, non tunable)
 - Materials under study: Nb₃Sn, HTS materials (YBCO)

- Up to 20T envisioned
- Larger fields smaller volume

- Magnet aperture
- Resonance frequency
- Tuning elements

A RADES experiment

- Depends on cavity material:
 - High purity copper: ~5.104
 - Superconducting: difficult in high magnetic field!
 Target: 10⁶
 - Demonstrated: 3.10⁵ (CAPP, non tunable)
 - Materials under study: Nb₃Sn, HTS materials (YBCO)

- D. Ahn et. al (CAPP), ~7 GHz https://arxiv.org/abs/2002.08769
- J. Golm et. al (RADES), ~8 GHz https://arxiv.org/abs/2110.01296

The Mainz Setup

Kristof Schmieden

• Magnet:

- Thanks to D. Budker's group at HIM
- Bore: 89mm
 Inner cryostat diameter: 50 mm
- Isolator (Circulator) before Preamp
 - Reduction of residual RF reflection
- Cryo Preamp @ 4K, 10GHz:
 - Gain: 36 dB
 - Noise: 3.6K (0.05dB)
- DAQ system complete
- Cryostat delayed

Cavity Design

- Custom tailored cavity to fit into the cryostat
 - Manufactured from high purity copper

Inner dimensions (103 ccm):

Kristof Schmieden

Antenna length optimised in simulation

Cavity - Comparison to Measurement

- Cavity characterised at room temperature:
 - Good agreement with simulation

- $\Delta f (meas sim) = 5.4 \text{ MHz}$
- $Q_0 (meas / exp) = 16300 / 18000$
 - Expecting factor 4 improvement at 4K:
 - $Q_{0,4K} = 65k$

Real Time Data Acquisition

Kristof Schmieden

PC

- 40 MHz realtime bandwidth

Software (C++):

- Realtime conversion to frequency domain
 - 1 kHz readout bandwidth
- Stacking of 2 second blocks
- Storage of spectra in root format

- Alignment & integration of spectra
- Cavity resonance curve: fit and subtraction

- Noise structure of RSA and cryo pre-amp:
 - Measured with input terminated with 50Ω
- Yields gain curve of DAQ chain

- 10 MHz readout window around 8.47 GHz
 - Measurement at room temperature
 - 1h integration time
- Noise structure stable over ~days
- Cryo-PreAmp does not add additional fine structure
- Variations in noise / gain:
 - Small scale: ~ 0.2 %
 - Full range min-max: < 0.8%

10

- Noise evolution over time
 - Integration of noise signal
 - Expect 1/\/t reduction of RMS of spectrum with integration time
- Manufacturer software:
 - Discontinuous shape
- Custom readout software: OK

Kristof Schmieden

- Noise evolution over time
 - Integration of noise signal
 - Expect 1/\/t reduction of RMS of spectrum with integration time
- Manufacturer software:
 - Discontinuous shape
- Custom readout software: OK

0.001 0.000

- Cavity noise signal (room temperature)
 - 1.44 times larger than pedestal
- Frequency drifts
 - Up to 175 kHz in 1h, < 0.1 kHz in 2s
 - Attributed to temperature drifts
- Mitigation:
 - During integration: shift frequency axis of every 2 sec block to keep cavity peak position const.

A RADES experiment SUPA^OX

- Cavity noise signal (room temperature)
 - 1.44 times larger than pedestal
- Frequency drifts
 - Up to 175 kHz in 1h, < 0.1 kHz in 2s
 - Attributed to temperature drifts
- Mitigation:
 - During integration: shift frequency axis of every 2 sec block to keep cavity peak position const.

A RADES experiment SUPA^oX

Data Analysis

- Basic approach:
 - Integration
 - Division by gain-curve
 - Cavity signal well described by Lorentz function
 - Residual < 10⁻³ at peak

Data Analysis

- Basic approach:
 - Integration
 - Division by gain-curve
 - Cavity signal well described by Lorentz function
 - Residual < 10⁻³ at peak

Data Analysis

- Basic approach:
 - Integration
 - Division by gain-curve
 - Cavity signal well described by Lorentz function
 - Residual < 10⁻³ at peak

- Axion signal injected into readout data
 - 1% of cavity thermal noise amplitude
- Subtraction of Lorenzian fit from corrected spectra
 - Removing cavity structure
- Peak finding in residual histogram

5		

- Axion signal injected into readout data
 - 1% of cavity thermal noise amplitude
- Subtraction of Lorenzian fit from corrected spectra
 - Removing cavity structure
- Peak finding in residual histogram

- Axion signal injected into readout data
 - 1% of cavity thermal noise amplitude
- Subtraction of Lorenzian fit from corrected spectra
 - Removing cavity structure
- Peak finding in residual histogram

n		
0		
-		

- Axion signal injected into readout data
 - 1% of cavity thermal noise amplitude
- Subtraction of Lorenzian fit from corrected spectra
 - Removing cavity structure
- Peak finding in residual histogram

n			
0			

Exnected Sens I vitv

Exnected Sens I vitv

15

Outlook

- Fast turnaround times:
 - Cavity installation & cool-down: 1/2 day
 - Good setup for cavity R&D

- Study superconducting cavities:
 - Within the **RADES** collaboration
 - Study behaviour of SC cavities in 14T B-Field
 - First SRF cavity expected for Q4 measurement
 - Magnet and Cryostat operational in Q4
 - First physics data taking in December

First physics result at fixed frequency early next year

RADES Activities

Physics results from the CAST-RADES run published J. High Energ. Phys. 2021, 75 (2021)

- More data collected the CERN's SM18 magnet facility:
 - Data analysis ongoing

Development of new cavities & readout for the BabyIAXO setup

- https://arxiv.org/abs/2204.11919
- https://arxiv.org/abs/2110.01296
- https://arxiv.org/abs/2111.14510

- Axion signal injected into readout data
 - 1% of cavity noise amplitude
- Alternative approach:
 - Two measurements of same length: signal (B-field ON), ref (B-field OFF)
- Subtraction of corrected reference from corrected signal spectra
 - Removing cavity structure
- Peak finding in residual histogram

A RADES experiment SUPAC

Subtraction of Lorentzian fit

Subtraction of reference run

- Axion signal injected into readout data
 - 1% of cavity noise amplitude
- Alternative approach:
 - Two measurements of same length: signal (B-field ON), ref (B-field OFF)
- Subtraction of corrected reference from corrected signal spectra
 - Removing cavity structure
- Peak finding in residual histogram

Comparable results

Reference spectrum
 subtraction slightly preferable

A RADES SUPAC

Subtraction of Lorentzian fit

Subtraction of reference run

