T-RAX: transversely resonant axion experiment Chang Lee and Olaf Reimann, Aug. 11, 2022 arXiv: 2203.15487

θ patches of Universe @ *f*_A

Chang Lee | **T-RAX** @ PATRAS 2022

• Pre-inflationary scenarios allows much wider m_a.

- Post-inflationary production prefers $m_a: 40 - 180 \ \mu eV.$ Buschmann *et al.*, Nat. Commun. 2022
- current Universe?

Motivation

5 / 30

• Cavity: traveling waves from two mirrors form a standing wave

PrincipleDish antenna

- Axion-induced field generates a "traveling wave" from a conducting surface
 - Dish antenna experiment: detect the traveling wave with an antenna
 - Traveling wave detection, e.g. WG, is less reflective and lossy than coax as the frequency increases.

Principle **Dielectric haloscope**

• Dielectric haloscope: replace a mirror with a **dielectric** that reflects the traveling wave with reflectivity Γ . Resonance + more traveling waves from the dielectric

Principle **Dielectric haloscope**

- **Higher** Γ : stronger resonance and **signal power**

• Dielectric haloscope: replace a mirror with a **dielectric** that reflects the traveling wave with reflectivity Γ . Resonance + more traveling waves from the dielectric

Principle **Dielectric haloscope**

- Higher Γ : stronger resonance and signal power

• Dielectric haloscope: replace a mirror with a **dielectric** that reflects the traveling wave with reflectivity Γ . Resonance + more traveling waves from the dielectric

• Can we further increase Γ ?

Principle Waveguide near cutoff

Principle Waveguide near cutoff

• Multiple "cells" to increase the signal power (coupled oscillator)

Principle **T-RAX**

- Multiple "cells" to increase the signal power (coupled oscillator)
 - Dispersion calculation to find the "Axion mode"

Principle **T-RAX**

- Multiple "cells" to increase the signal power (coupled oscillator) • Dispersion calculation to find the "Axion mode"
- - Monolithic structure simplifies readout

Principle **T-RAX**

Chang Lee | **T-RAX** @ PATRAS 2022

- 80,000 signal power boost from the flat mirror case @ 4K Cu.
- Higher conductivity increases the signal power.

Signal power

20/30

Chang Lee | **T-RAX** @ PATRAS 2022

Signal power

- Scan a wider mass range by changing the dielectric spacing
- $50 \,\mu m$ precision feasible

 10^{0}

 10^{-6}

$$C_{a\gamma} = 15.1 \left(\frac{300 \text{ MeV/cm}^3}{\rho_a}\right)^{\frac{1}{2}} \left(\frac{80,000}{\beta^2}\right)^{\frac{1}{2}} \left(\frac{80,000}{\beta^2}\right)^{\frac{1}{2}} \left(\frac{8000}{\beta^2}\right)^{\frac{1}{2}} \left(\frac{80000}{\beta^2}\right)^{\frac{1}{2}} \left(\frac{1000}{\beta^2}\right)^{\frac{1}{2}} \left(\frac{1000}{\beta^2}\right$$

• Single quantum limit, Cu @ 4K

Chang Lee | **T-RAX** @ PATRAS 2022

- **Single photon counters** will significantly speed up the search above 10 GHz.
- T-RAX is an ideal platform. Its taper combines the signal power into a single port and maximizes the signal-to-noise ratio.
- Major leap toward the QCD axion! Active ongoing developments.

Initial measurement last week!

redbubble.com

Dielectric positioning

