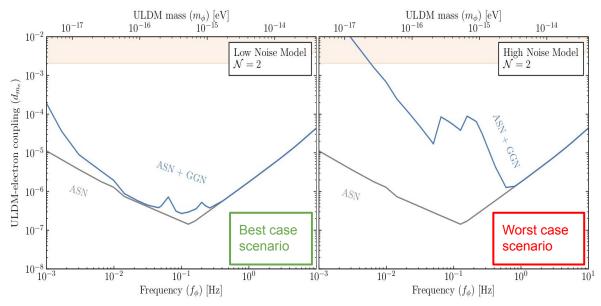
Towards sub-Hz ultralight scalar dark matter searches with atom multi-gradiometry

Leonardo Badurina, Valerie Gibson, Christopher McCabe, Jeremiah Mitchell

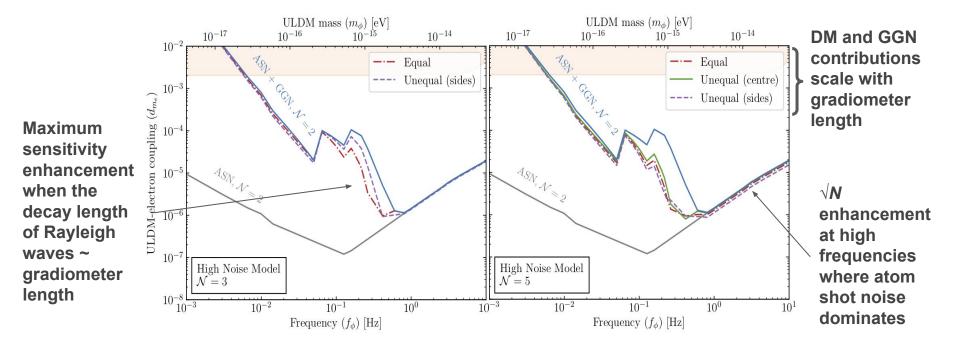
AI-i AI-1, z_1 AG-(1,2) AI-2, $z_2 =$ ~~~ n=419 AI-3, z_3 1e) Height AG- $(2, \mathcal{N}-1)$ AI- i, z_i z_i AI-(\mathcal{N} -1), $z_{\mathcal{N}$ -1 — AI- \mathcal{N} , $z_{\mathcal{N}}$ — 0 Т 2TAG-(\mathcal{N} -1, \mathcal{N}) Time

17th Patras Workshop, Mainz, 8 August 2022


Scalar ULDM searches with atom-gradiometry below 1 Hz

Below 1 Hz, in long vertical baseline experiments (e.g. AION-km, MAGIS-km), gravity gradient noise (GGN) from seismic waves may severely impact the experiment's sensitivity reach.

What *passive* noise mitigation strategies could be implemented?


Answer: an atom multi-gradiometer experiment

AION Collaboration [LB et al.] JCAP 05 (2020) 011, LB et al. Phys.Rev.D 105 (2022) 2, 023006

Rescuing part of parameter space with multi-gradiometry

Three or more interferometers along the baseline would be sufficient to suppress GGN and boost the sensitivity reach by up to an order of magnitude between ~ 0.1 Hz and 1 Hz.

LB et al., in preparation