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VMB@CERN: A NOVEL MODULATION SCHEME

LHC dipoles at CERN provide the LHC dipole magnet B2 L= 1200 T’ m
best opportunity to maximize B2L: PVLAS permanent magnets B2 L= 10 T°m

but field in superconducting magnets cannot be modulated fast enough!!

Modulate the VMB signal using two co-rotating half waveplates (HWP) inside the cavity:
* Polarisation rotates inside the magnetic field but is fixed on the mirrors (no mirror birefringence signal)
 Maximum finesse = 800 - 3000 (depending on the losses of the waveplates)

The expected ellipticity signal is:

a, , also depend on the position
and alignment of the HWPs
with respect to the laser beam:

o, , are the deviations from a  phase shift of the two HWPs and ¢(t) is their rotation angle

[G. Zavattini et al. Eur. Phys. J. C 82:159 (2022)]

Ly Relevant hamonics Ferrara to validate the new modulation scheme.
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The presence of a greater-than-expected peak at
the 4th harmonic =2 potential showstopper!

WORKAROUND: SLOW AMPLITUDE MODULATION OF THE MAGNETIC FIELD

* Magnet modulation separates the VMB signal from the peaks due to the system

air at atmospheric pressure.

* Rotating the polarisation with the waveplates shifts the signal to ‘high frequency’.

atic effects.

Method was validated measuring the Cotton-Mouton effect (magnetic birefringence in gasses) in
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FURTHER REDUCTION OF PEAKS: ALIGNMENT WITH GREEN LASER

Injecting in the polarimeter an auxiliary green laser beam @ 532 nm (HWP@1064 nm =2 FWP@532 nm,
polarization is not rotated in green) allows real-time control of the alignment of the individual waveplates.
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REDUCING BROADBAND NOISE: NEW WAVEPLATE MECHANICS

New stepper motors with a more accurate rotation (absolute phase) control
Relative rotation rms noise between the two HWPs was improved by a factor > 10!
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The same method was used to obtain the most precise . N R N R N S ) FUTURE WORK AND MILESTONES
measurement of the Cotton-Mouton effect in N, gas @ 1064 nm | Second half of 2022:
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Anu — (2380 + 0007 + 0024 ) x 10 T atm Nitrogen pressure (mbar) A Design Of vacuum and LHC magnet interfaces to OptiCS.
[G. Zavattini et al. Eur. Phys. J. C 82:159 (2022)] First half of 2023:

e Vibration noise study in SM18 @ CERN.

Second half of 2023:

* |Installation at CERN of a complete polarimeter (no cavity) with an LHC dipole to implement the
HWPs control system.

2025:

 Perform accurate Cotton-Mouton measurements (no cavity).

* Frequency modulation study of the LHC magnet.

* |nstallation of the 20m long optical cavity.

2026:

e Calibration of full setup and data taking.
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