## • Axions Quark Nuggets are a version of the quark nugget model proposed by Zhitnitsky (2003)

- Can explain why  $\Omega_{DM} \approx \Omega_{vis}$
- These axions have much broader spectral distribution  $v_{avg} \approx 0.5 c$
- Composite nature of AQN's means that as they pass through the earth Axion production rate will change and this leads to daily modulation







## Axion Cavity Simulation



THE UNIVERSITY OF BRITISH COLUMBIA

- Spectra are created by first generating the no signal spectra
- Then the expected axion signal in the cavity is added.
- The signal is modulated by a cosine factor for the day to simulate daily modulation

$$P_{cav} = U_0 \left( \nu_{ci} \frac{\beta_i}{1+\beta_i} C_i \frac{Q}{1+[2(\nu_{ij}-\nu_{ci})/\Delta\nu_{ci}]^2} \right)$$
$$P_{mod} = A \cos\left(2\pi t/T - \phi\right) + C$$
$$P_{tot} = P_{cav} G_p(f_a, \Delta f_a) P_{mod} + P_{shape} \sigma(1, 1/\sqrt{t\Delta\nu})$$





## Simulation Results



## THE UNIVERSITY OF BRITISH COLUMBIA



1.2 1.1 Average SNR 6'0 10% 0.8 + 1% 4 0.1% 0.01% 0.7 \* fit 0 5 10 15 20 25

Time (hours)

Average SNR vs Time (B=0 Shape)

Key take away: SG fit degrades signal quality rapidly B=0 Cavity Shape retains signal quality