Status of the OUAX experiment

TWPA tests 00000000

LNF

Lab @INFN-LNL

C. Braggio (this presentation), G. Carugno, N. Crescini, R. Di Vora, A. Ortolan, G. Ruoso, A. Lombardi, R. Pengo, L. Taffarello

 $100 \,\mu\text{W}$ at $100 \,\text{mK}$

Lab @INFN-LNF

C. Gatti, D. Alesini, D. Babusci, A. D'Elia, D. Di Gioacchino, C.Ligi, G. Maccarrone, A. Rettaroli, S. Tocci

@INFN-Salerno U. Gambardella, G. Iannone, CD. D'Agostino @INFN-Trento P. Falferi, R. Mezzena

- \rightarrow DM axion search (axion-photon coupling) by scanning (8.5 11) GHz frequency range at KSVZ sensitivity
- → LNL and LNF INFN laboratories will work in synergy, operating in different mass ranges and using different low noise amplifiers and single microwave photon detectors.
- \rightarrow EU and US collaborations for the integration of:
 - 1. high-Q cavities (SQMS, Superconducting Quantum Materials and Systems Center, led by Fermilab)
 - 2. state-of-the-art itinerant microwave photon counters (Quantronics group, Saclay)
 - 3. traveling wave PA (N. Roch group, Néel Institute in Grenoble)

SUPERCONDUCTING QUANTUM MATERIALS & SYSTEMS CENTER

Quantronics Group Research Group in Quantum Electronics, CEA-Saclay, France

<ロト 4 回 ト 4 三 ト 4 三 ト 1 の 0 0 0</p>

LNL and LNF haloscopes	July 2021 run	TWPA tests	SMPDs	LNF
0000	000	00000000	00000000000	0

HALOSCOPE - resonant search for axion DM in the Galactic halo

- original proposal by P. Sikivie (1983)

- search for axions as cold dark matter constituent: SHM from Λ_{CDM} , local DM density ρ \rightarrow signal is a **line** with 10⁻⁶ relative width in the energy(\rightarrow frequency) spectrum

 \rightarrow + sharp (10⁻¹¹) components due to non-thermalized

- an axion may interact with a strong \vec{B} field to produce a photon of a specific frequency ($\rightarrow m_a$)

LNL and LNF haloscopes	July 2021 run	TWPA tests	SMPDs	LNF
0000	000	00000000	000000000000	0

QUAX COLLABORATION ROADMAP (2021-2025)

	LNF	LNL
Magnetic field	9 T	14 T
Magnet length	40 cm	$50 \mathrm{~cm}$
Magnet inner diameter	$9~\mathrm{cm}$	$12 \mathrm{~cm}$
Frequency range	8.5 - $10~\mathrm{GHz}$	9.5 - 11 GHz
Cavity type	Hybrid SC	Dielectric
Scanning type	Inserted rod	Mobile cylinder
Number of cavities	7	1
Cavity length	0.3 m	0.4 m
Cavity diameter	25.5 mm	58 mm
Cavity mode	TM010	pseudoTM030
Single volume	$1.5 \cdot 10^{-4} \text{ m}^3$	$1.5 \cdot 10^{-4} \text{ m}^3$
Total volume	$7{\otimes}0.15$ liters	0.15 liters
Q_0	300 000	1000000
Single scan bandwidth	630 kHz	30 kHz
Axion power	$7\otimes 1.2\cdot 10^{-23}~{\rm W}$	$0.99 \cdot 10^{-22} \ {\rm W}$
Preamplifier	TWJPA/INRIM	DJJAA/Grenoble
Operating temperature	30 mK	30 mK

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

LNL and LNF haloscopes	July 2021 run	TWPA tests	SMPDs	LNF
000●	000	00000000	000000000000	0

OUTLINE

- 1. data analysis results of July 2021 run with high-Q dielectric resonator 8 T-field, HEMT readout, 1 MHz-tuning at 10.353 GHz ($m_a = 42.8 \,\mu\text{eV}$)
- 2. **TWPA**-based amplification chain characterization generic input test cavity
- 3. July 2022 run with the dielectric resonator ($\nu_{030} = 10.353$ GHz) 8 T-field, TWPA readout at 10 GHz
- 4. Single Microwave Photon Detectors for "itinerant" photons:
 - preparation of a transmon based-SMPD haloscope readout experiment 3 T-field, 7 GHz NbTi cavity, 10 MHz-tuning
 - preliminary results obtained a underdamped Josephson junction (L. Kuzmin) coupled to a generic input test cavity

LNL and LNF haloscopes 0000	July 2021 run ●00	TWPA tests	SMPDs 000000000000	LNF 0

DIELECTRIC CAVITY

LNL and LNF haloscopes	July 2021 run	TWPA tests	SMPDs	LNF
0000	⊙●○	000000000	000000000000	0
0000		00000000	00000000000	

MEASUREMENT SCHEME

- two weeks data taking (June 2021)
- cavity excess-power searched in a small frequency band about 10.353 GHz ($\sim 42.8 \mu$ eV axion mass)
- three different configurations:
 - 1. $\beta \simeq 1$, i.e. $Q_L > Q_a$ 2. $\beta \simeq 6$, i.e. $Q_L \simeq Q_a$ 3. $\beta \ge 14$, i.e. $O_I < O_a$

•
$$T_{\rm sys} = 17.3 \pm 1 \, {\rm K}$$
 $T_{\rm sys} =$

• a posteriori measured $T_A = 10 - 12$ K instead of the nominal noise temperature of 4.5 K, crvo HEMT sent for repair

<ロト 4 回 ト 4 三 ト 4 三 ト 1 の 0 0 0</p>

LNL and LNF haloscopes 0000	July 2021 run ○○●	TWPA tests	SMPDs 000000000000	LNF 0

RESULTS

- 1. $\beta \simeq 1$, i.e. $Q_L > Q_a$ 2. $\beta \simeq 6$, i.e. $Q_L \simeq Q_a$
- 3. $\beta \ge 14$, i.e. $Q_L < Q_a$

issues regarding possible systematics for cases 1) and 2) \longrightarrow we focused on $Q_L < Q_a$, with $Q_L \sim 3 \times 10^5$

- \odot Haystac data analysis procedure
- even with a **very bad receiver**, to operate the high-Q cavity allowed for probing realistic QCD axion models, only marginally outside the benchmark QCD axion band
- axion mass not accessible to other running experiments

シック・ 山 (山)・(山)・(山)・(口)

LNL and LNF haloscopes	July 2021 run	TWPA tests	SMPDs	LNF
0000	000	•00000000	000000000000	0

OUTLINE

- **1.** data analysis results of July 2021 run with high-Q dielectric resonator 8 T-field, HEMT readout, 1 MHz-tuning at 10.353 GHz ($m_a = 42.8 \ \mu \text{eV}$)
- 2. TWPA-based amplification chain characterization generic input test cavity
- **3.** July 2022 run with the dielectric resonator ($\nu_{030} = 10.353$ GHz) 8 T-field, TWPA readout at 10 GHz
- **4.** preparation of a single microwave photon counter (SMPD) experiment 3 T-field, 7 GHz NbTi cavity, 10 MHz-tuning

LNL and LNF haloscopes	July 2021 run	TWPA tests	SMPDs	LNF
0000	000	00000000	00000000000	0

TRAVELING WAVE PARAMETRIC AMPLIFIERS

In haloscope search amplifiers with **quantum-limited noise performance** and \sim **GHz amplification bandwidth** are needed.

Standard resonant parametric amplification puts a constraint on the amplification bandwidth. This limitation can be overcome with TWPAs.

LNL and LNF haloscopes	July 2021 run	TWPA tests	SMPDs	LNF
0000	000	00000000	00000000000	0

Josephson metamaterial and Reversed-Kerr phase matching

- tunable, nonlinear unit element is the "snail"
- phase matching between pump, signal and idler fields is accomplished via **reversed kerr** phase matching

A. Renadive *et al*, Nat. Commun. 13, 1737 (2022) M. Esposito *et al* Appl. Phys. Lett. 119, 120501 (2021) M. Esposito *et al* Phys. Rev. Lett 128, 153603 (2022) **— broadband squeezing!**

LNL and LNF haloscopes	July 2021 run	TWPA tests	SMPDs	LNF
0000	000	000●00000	000000000000	0

Measuring TWPA performance in a haloscope setup

 $He^3\text{-}He^4 \ ``wet'' \ dilution \ refrigerator \ (refurbished) \rightarrow recovery \ system + compressor \ at \ LNL$

1 mW cooling power at 120 mK $T_{\it mc}=55$ mK 8T-magnet, charging at 0.07 mA/s ; a 14~T magnet is coming in 2023

0000 00000000 0000 0000 0000 0000 0000 0000	LNL and LNF haloscopes	July 2021 run	TWPA tests	SMPDs	LNF
	0000	000	000000000	000000000000	0

Measuring TWPA performance in a haloscope setup

• overall detection **gain**, from *G*_{xy}s

$$g_4 = \sqrt{\frac{G_{14}G_{34}}{G_{31}}}$$

• system **equivalent noise temperature**, referring noise power at L4 output to the input:

$$P_n^{xy} = g_4 k T_{sys} B + N_{SA} \qquad (xy) = \{14, 34\}$$

- reduced **gain ripples** compared to state-of-the-art TWPAs
- ⊙ in-situ tunability of amplification bandwidth over an unprecedented wide range

arXiv:2205.02053

NL and LNF haloscopes	July 2021 run 000	TWPA tests	SMPDs 000000000000	LNF 0
			, , , , , , , , , , , , , , , , , , ,	

Measuring TWPA performance in a haloscope setup

• figures of Merit for the complete detection chain K

 $g_4(dB_{0}) = (76.4 \pm 0.01)$ $T_{SUVER} = (2.0 \times 10.06) \text{ K}$

• figures of merit for the **TWPA**

 $G_{\rm TWPA}({\rm dB}) = 24$ $T_{\rm TWPA} \approx 1.8 \,{\rm K}$

LNL and LNF haloscopes	July 2021 run	TWPA tests	SMPDs	LNF
0000	000	0000000●0	00000000000	o

SMPDs: MOTIVATION

- QUAX_{a−e}, the ferrimagnetic haloscope Phys. Rev. Lett. 124, 171801 (2020)
- \odot QUAX_{*a*- γ} at 10 GHz
- "Game changer at high frequency and low temperatures": a photon counter measures in the energy eigenbasis beyond SQL

$$- \text{ SNR}_{\text{exc}} = \frac{P_{a \to \gamma}}{kT_{\text{sys}}} \sqrt{\frac{t_m}{\Delta \nu_a}} \quad \text{ SNR}_{\text{SMPD}} = \frac{P_{a \to \gamma}}{h\nu} \sqrt{\frac{t_m}{\Gamma_{dc}}}$$
$$\frac{\text{SNR}_{\text{SMPD}}}{\text{SNR}_{\text{exc}}} > 1 \Longleftrightarrow \frac{\Gamma_{dc}}{\eta} < \frac{\nu_a}{10^6}$$

plot example at 10 GHz given on Tue by SungWoo YOUN

quantum advantage can be shown even with relatively high dark count rates Γ_{dc}

▲□▶▲□▶▲□▶▲□▶ = 三 のへで

LNL and LNF haloscopes	July 2021 run	TWPA tests	SMPDs	LNF
0000	000	00000000	●00000000000	0

SMPDs for itinerant photons

A Single Photon Microwave Counter (SMPD) architecture is significantly different whether it is meant for **cavity photons** or **itinerant (traveling) photons**.

We are interested in the itinerant version due to the intense magnetic fields involved in axion search.

- $-\,$ detection of individual microwave photons is a challenging task because of their $low~energy\sim 10^{-5}\,\rm eV$
- a solution: use "artificial atoms" introduced in circuit QED, their transition frequencies lie in the ~GHz range
- or: rely on a single current-biased Josephson junction (L. Kuzmin)

LNL and LNF haloscopes	July 2021 run	TWPA tests	SMPDs	LNF
0000	000	00000000	⊙●○○○○○○○○○	0

ARTIFICIAL ATOMS: the TRANSMON QUBIT

 $E_{01} = E_1 - E_0 = \hbar \omega_{01} \neq E_{02} = E_2 - E_1 = \hbar \omega_{21}$ \rightarrow good **two-level atom** approximation

control internal state by shining laser tuned at the transition frequency:

$$H = -\vec{d} \cdot \vec{E}(t)$$
, with $E(t) = E_0 \cos \omega_{01} t$

toolkit: capacitor, inductor, wire (all SC)
$$\begin{split} \omega_{01} &= 1/\sqrt{LC} \sim 10\,\mathrm{GHz} \sim 0.5\,\mathrm{K} \\ \rightarrow \mathrm{simple}\,\mathrm{LC}\,\mathrm{circuit}\,\mathrm{is}\,\mathrm{not}\,\mathrm{a}\,\mathrm{good}\,\mathrm{two-level}\,\mathrm{atom} \\ \mathrm{approximation} \end{split}$$

$$\begin{split} I_{J} &= I_{c} \sin \phi \qquad V = \frac{\phi_{0}}{2\pi} \frac{\partial \phi}{\partial t} \\ V &= \frac{\phi_{0}}{2\pi} \frac{1}{I_{c} \cos \phi} \frac{\partial I_{J}}{\partial t} = L_{J} \frac{\partial I_{J}}{\partial t} \\ L_{J} &= \frac{\phi_{0}}{2\pi} \frac{1}{I_{c} \cos \phi} \qquad \text{NL Josephson inductance} \end{split}$$

LNL and LNF haloscopes	July 2021 run	TWPA tests	SMPDs	LNF
0000	000	00000000	00000000000	0

transmon-based SMPD

In the Quantronics group (CEA, Saclay) a transmon-based counter has been developed and used to make spin fluorescence measurements, paving the way to **single spin flip detection** with SMPDs.

 $\omega_a + \omega_p = \omega_q + \omega_b$

R. Lescanne *et al*, Phys. Rev. X 10, 021038 (2020) E. Albertinale *et al*, Nature 600, 434 (2021)

Quantronics Group

Research Group in Quantum Electronics, CEA-Saclay, France

LNL and LNF haloscopes	July 2021 run	TWPA tests	SMPDs	LNF
0000	000	00000000	00000000000	0

transmon-based SMPD

In the Quantronics group (CEA, Saclay) a transmon-based counter has been developed and used to make spin fluorescence measurements, paving the way to single spin flip detection with SMPDs.

R. Lescanne et al, Phys. Rev. X 10, 021038 (2020) E. Albertinale, Nature 600, 434 (2021)

Quantronics Group Research Group in Quantum

Electronics, CEA-Saclay, France

- a three-step process repeated several times _
- qubit reset (R) performed by turning on the pump pulse + a weak resonant coherent pulse to the waste port
- detection (D) step with the pump pulse on _
- measurement (M) step probes the dispersive shift of the _ buffer resonator to infer the gubit state

LNL and LNF haloscopes	July 2021 run	TWPA tests	SMPDs	LNF
0000	000	00000000	00000000000	0

QUANTUM SENSING

"Quantum sensing" describes the use of a quantum system, quantum properties or quantum phenomena to perform a measurement of a physical quantity Rev. Mod. Phys. 89, 035002 (2017)

- 1. Use of a **quantum object** to measure a physical quantity (classical or quantum). The quantum object is characterized by quantized energy levels, i.e. electronic, magnetic or vibrational states of superconducting or spin qubits, neutral atoms, or trapped ions.
- 2. Use of **quantum coherence** (i.e., wave-like spatial or temporal superposition states) to measure a physical quantity
- 3. Use of **quantum entanglement** to improve the sensitivity or precision of a measurement, beyond what is possible classically.

LNL and LNF haloscopes	July 2021 run	TWPA tests	SMPDs	LNF
0000	000	00000000	00000000000	0

BASIC PROTOCOL

quantum sensing experiments typically follow a generic sequence of processes known as:

- 1. sensor initialization into a known basis state
- 2. interaction with the signal
- 3. sensor readout
- 4. signal estimation

LNL and LNF haloscopes	July 2021 run	TWPA tests	SMPDs	LNF
0000	000	00000000	000000000000	o

PILOT SMPD-HALOSCOPE EXPERIMENT

- copper cavity sputtered with NbTi magnetron sputtering in INFN-LNL
- $\odot~$ right cylinder resonator, TM_{010} mode $\nu_c \sim 7.3~{\rm GHz}$ to match the new generation SMPD bandwidth (7.280 7.380) GHz
- \odot system of sapphire triplets to tune the cavity frequency ~ 10 MHz tuning without impacting *Q*
- Attocube nanopositioner to change the sapphire rods position

Sar

-	NL and LNF haloscopes	July 2021 run 000	TWPA tests 000000000	SMPDs 0000000●00000	LNF 0

PILOT SMPD-HALOSCOPE EXPERIMENT

- copper cavity sputtered with NbTi magnetron sputtering in INFN-LNL
- \odot right cylinder resonator, TM₀₁₀ mode $\nu_c \sim 7.3$ GHz to match the new generation SMPD bandwidth (7.280 - 7.380) GHz
- \odot system of sapphire triplets to tune the cavity frequency ~ 10 MHz tuning without impacting *Q*
- Attocube nanopositioner to change the sapphire rods position
- developed and tested a **3 T magnet** (U. Gambardella, INFN Salerno)

LNL and LNF haloscopes	July 2021 run	TWPA tests	SMPDs	LNF
0000	000		○○○○○○○○●○○○	o

More cooling power coming soon...

Leiden Cryogenics commissioning in October 2022

"wet" delfridge from PTB (ongoing refurbishing)

LNL and LNF haloscopes	July 2021 run	TWPA tests	SMPDs	LNF
0000	000	00000000	0000000000000	0

Not that **practical** to use ... but that's it!

LNL and LNF haloscopes	July 2021 run	TWPA tests	SMPDs	LNF
0000	000	00000000	0000000000000	0

Current-biased Josephson Junction

working principle:

- voltage switching of an underdamped JJ
- ► phase diffusion regime

L.S. Kuzmin *et al* IEEE Trans Appl Supercond 28, 2400505 (2018); A. L. Pankratov *et al* npj Quantum Information 8:61 (2022)

"washboard potential"

シック・ 山 (山)・(山)・(山)・(口)

LNL and LNF haloscopes	July 2021 run	TWPA tests	SMPDs	LNF
0000	000	000000000	000000000000	●

QUAX Haloscope at LNF

Leiden CF-CS-110-1000 dilution refrigerator with 8 mK base temperature

Probe KSVZ axions in 1 GHz band at 9 GHz

- Multi cavity for fast scanning rate
- Wide band TWJPA quantum amplifier
- Superconducting cavities

9 T magnet from AMI

First run with single 8.5 GHz OFHC Cu cavity 1

