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Outline
• Poynting Theorem; a systematic way to calculate resonant haloscope sensitivity, 

generalised to include QEMD (Sokolov and Ringwald arXiv:2205.02605 [hep-ph])

• Sensitivity of AC and DC Haloscopes

• Anyon Cavity Haloscope for ultra-light dark matter

• Sensitivity of Axion Haloscopes to GWs and Comparing Dissimilar Axion 
Haloscopes

• Low-mass sensitivity



Sensitivity of a Resonant Haloscope
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On resonance: Real part of Complex Poynting Theorem
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Dual Mode Upconversion: UPLOAD

Catriona Thomson

∮ Re (S1) ⋅ ̂nds = ∫ (−
1
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Power Technique Applying Poynting Theorem
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Frequency Technique Applying Perturbation Theorem
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.
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1
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,
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,



ξ01 = − 0.437

ξ10 ∼ − 0.451 → − 0.449.

TE0,1,1 − TM0,2,0

Mode Pairs: choose m=0: For upconversion ξ10 ∼ ξ01

ξ01(gaγγ
ω1

ω0
+ gaBB)Sensitivity ~



Fermions Come in Two Chiralities, 
Called Left and Right. Bosons Do Not



3D Printed Super Conducting Aluminium Cavities
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Helicity of light plays an important part 
in the coupling between electromagnetic 

fields and chiral objects 

Axion is a Chiral Object

Optical chirality: Twisted light 

optical vortex beams

Circularly polarized light

ℋp =
2 Im[ ∫ Bp( ⃗r ) ⋅ E*p ( ⃗r ) dτ]

∫ Ep( ⃗r ) ⋅ E*p ( ⃗r ) dτ ∫ Bp( ⃗r ) ⋅ B*p ( ⃗r ) dτ
,
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jμ
cff ≡ ∂ν ( 1

2
hFμν + hν

αFαμ − hμ
αF∞ν)

jeff ∼ ωghB0

Ea = gaγγaB0 = θaB0jeff  ⊃ gaγγ∂laB0 ≃ ωaθaB0

 identifying θa ∼ h
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a(t) =
1
2 (ãe−jωat + ã*ejωat)

= Re (ãe−jωat)

Axion Equation of Motion: 

Klein–Gordon equation 
for massive spin 0 

particle 

Photon Haloscopes
• Axions convert into photons in presence of a background 

AC electromagnetic field

∇ ⋅ ⃗E =
ρe

ε0
+ cgaγγ

⃗B . ∇a

∇ × ⃗B −
1
c2

∂t
⃗E =

μ0
⃗J e − gaγγϵ0c ( ⃗B ∂ta + ∇a × ⃗E )

∇ ⋅ ⃗B = 0
∇ × ⃗E + ∂t

⃗B = 0

Modified Axion Electrodynamics 

(Represents two photons)
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Photonic Haloscope Equations in terms of Auxiliary Fields
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Sensitivity of  Low-Mass and Resonant Axion Haloscopes

E = mc2
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