

New Axion Dark Matter Search Techniques

 Michael Tobar
WESTERN AUSTRALIA

17TH PATRAS WORKSHOP ON AXIONS, WIMPS:AND WISPS

Outline

- Poynting Theorem; a systematic way to calculate resonant haloscope sensitivity, generalised to include QEMD (Sokolov and Ringwald arXiv:2205.02605 [hep-ph])
- Sensitivity of AC and DC Haloscopes
- Anyon Cavity Haloscope for ultra-light dark matter
- Sensitivity of Axion Haloscopes to GWs and Comparing Dissimilar Axion Haloscopes
- Low-mass sensitivity
$P_{a v}=\frac{1}{2} \operatorname{Re} \oint_{S_{c}}\left(\mathbf{E} \times \mathbf{H}^{*}\right) \cdot d \mathbf{s}$

Average radiated power

$$
\begin{aligned}
& \mathbf{S}=\frac{1}{2 \mu_{0}} \mathbf{E}_{1} \times \mathbf{B}_{1}^{*} \text { and } \mathbf{S}^{*}=\frac{1}{2 \mu_{0}} \mathbf{E}_{1}^{*} \times \mathbf{B}_{1} \\
& \quad \nabla \cdot \mathbf{S}=\frac{1}{2 \mu_{0}} \nabla \cdot\left(\mathbf{E}_{1} \times \mathbf{B}_{1}^{*}\right)=\frac{1}{2 \mu_{0}} \mathbf{B}_{1}^{*} \cdot\left(\nabla \times \mathbf{E}_{1}\right)-\frac{1}{2 \mu_{0}} \mathbf{E}_{1} \cdot\left(\nabla \times \mathbf{B}_{1}^{*}\right) \\
& \quad \nabla \cdot \mathbf{S}^{*}=\frac{1}{2 \mu_{0}} \nabla \cdot\left(\mathbf{E}_{1}^{*} \times \mathbf{B}_{1}\right)=\frac{1}{2 \mu_{0}} \mathbf{B}_{1} \cdot\left(\nabla \times \mathbf{E}_{1}^{*}\right)-\frac{1}{2 \mu_{0}} \mathbf{E}_{1}^{*} \cdot\left(\nabla \times \mathbf{B}_{1}\right)
\end{aligned}
$$

On resonance: Real part of Complex Poynting Theorem $=0$ for closed system

$$
\oint \operatorname{Re}(\mathbf{S}) \cdot \hat{n} d s=\frac{j \omega_{a} g_{a_{y}} \epsilon_{0} c}{4} \int\left(\mathbf{E}_{1} \cdot \tilde{a}^{*} \mathbf{B}_{0}^{*}-\mathbf{E}_{1}^{*} \cdot \tilde{a} \mathbf{B}_{0}\right) d \tau-\frac{1}{4} \int\left(\mathbf{E}_{1} \cdot \mathbf{J}_{e 1}^{*}+\mathbf{E}_{1}^{*} \cdot \mathbf{J}_{e 1}\right) d \tau
$$

$P_{s} \quad$ Axion power input
P_{d} Cavity power distribution

$$
\begin{aligned}
P_{d} & =\frac{1}{4} \int\left(\mathbf{E}_{1} \cdot \mathbf{J}_{e 1}^{*}+\mathbf{E}_{1}^{*} \cdot \mathbf{J}_{e 1}\right) d \tau=\frac{\omega_{1} \epsilon_{0}}{2 Q_{1}} \int \mathbf{E}_{1} \cdot \mathbf{E}_{1}^{*} d V=\frac{\omega_{1} U_{1}}{Q_{1}} \\
P_{s} & =\frac{\omega_{a} g_{a r y} a_{0} \epsilon_{0} c}{2 Q_{1}} \int\left(\operatorname{Re}\left(\mathbf{E}_{1}\right) \cdot \operatorname{Re}\left(\mathbf{B}_{0}\right)\right) d \tau=P_{d}=\frac{\omega_{1} U_{1}}{Q_{1}}
\end{aligned}
$$

Anton Solokov: Electromagnetic couplings of axions 12 Aug 2022, 10:20

Electromagnetic Couplings of Axions

Anton V. Sokolov, Andreas Ringwald
Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
E-mail: anton.sokolov@desy.de, andreas.ringwald@desy.de

QUANTUM ELECTROMAGNETODYNAMICS

$$
\begin{array}{cc}
\begin{array}{c}
1971 \text { ZWANZIGER } \\
A_{\mu} \text { and } B_{\mu} \longleftrightarrow \text { photon }
\end{array} & \begin{array}{c}
\text { 1977 ZBN } \\
\mathcal{L}=\mathcal{L}_{\text {kin }}\left(A_{\mu}, B_{\mu}, n_{\mu}\right)-
\end{array} \\
\left.j_{e}^{\nu} A_{\nu}-b, 7, j_{\mu}\right)= \\
j_{m}^{\nu} B_{\nu} & \int \exp \left\{i\left(\mathcal{S}\left[\mathbf{A}_{\mu}, \mathbf{B}_{\mu}, \mathbf{n}_{\mu}, \chi, \bar{\chi}\right]+j_{e} a+j_{m} b\right)\right\} \\
& \times \mathcal{D} \mathbf{A}_{\mu} \mathcal{D} \mathbf{B}_{\mu} \mathcal{D} \chi \mathcal{D} \bar{\chi}
\end{array}
$$

- TWO vector-potentials describe ONE particle - photon
- partition function is Lorentz-invariant
- theory is generally not CP-invariant

γ_{1}

γ_{2}

Anton Solokov: Electromagnetic couplings of axions 12 Aug 2022, 10:20

Electromagnetic Couplings of Axions

Anton V. Sokolov, Andreas Ringwald
Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
E-mail: anton.sokolov@desy.de, andreas.ringwald@desy.de

QUANTUM ELECTROMAGGNETODYNAMICS

1971 ZWANZIGER

$$
\begin{gathered}
\begin{array}{c}
1971 \text { ZWANZIGER } \\
A_{\mu} \text { and } B_{\mu} \longleftrightarrow \text { photon } \\
\begin{array}{c}
\mathcal{L}=\mathcal{L}_{\text {kin }}\left(A_{\mu}, B_{\mu}, n_{\mu}\right)-
\end{array} \\
j_{e}^{\nu} A_{\nu}-j_{m}^{\nu} B_{\nu}
\end{array} \\
\begin{array}{r}
Z\left(a, b, 7 / \mu_{\mu}\right)= \\
\int \exp \left\{i\left(\mathcal{S}\left[\mathbf{A}_{\mu}, \mathbf{B}_{\mu}, \mathbf{n}_{\mu}, \chi, \bar{\chi}\right]+j_{e} a+j_{m} b\right)\right\} \\
\end{array} \\
\times \mathcal{D} \mathbf{A}_{\mu} \mathcal{D} \mathbf{B}_{\mu} \mathcal{D} \chi \mathcal{D} \bar{\chi}
\end{gathered}
$$

γ_{1}

γ_{2}

Two other axion couplings
$g_{a A B} \quad g_{a B B}$

- TWO vector-potentials describe ONE particle - photon
- partition function is Lorentz-invariant
- theory is generally not CP-invariant

Electromagnetic Couplings of Axions

Anton V. Sokolov, Andreas Ringwald

Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
E-mail: anton.sokolov@desy.de, andreas.ringwald@desy.de

AXION MAXWELL EQUATIONS

Classical equations of motion corresponding to this Lagrangian are the axion Maxwell equations:

$$
\begin{aligned}
& \partial_{\mu} F^{\mu \nu}-g_{a A \mathrm{~A}} \partial_{\mu} a F^{d \mu \nu}+g_{a A \mathrm{~B}} \partial_{\mu} a F^{\mu \nu}-\frac{e^{2} a}{4 \pi^{2} v_{a}} j_{m}^{\phi \nu}=\bar{j}_{e}^{\nu}, \\
& \partial_{\mu} F^{d \mu \nu}+g_{a \mathrm{BB}} \partial_{\mu} a F^{\mu \nu}-g_{a \mathrm{AB}} \partial_{\mu} a F^{d \mu \nu}=j_{m}^{\nu}, \\
& \left(\partial^{2}-m_{a}^{2}\right) a=-\frac{1}{4}\left(g_{a A \mathrm{~A}}+g_{a \mathrm{BB}}\right) F_{\mu \nu} F^{d \mu \nu}-\frac{1}{2} g_{a \mathrm{AB}} F_{\mu \nu} F^{\mu \nu}
\end{aligned}
$$

In the experimentally relevant case, in terms of electric and magnetic fields:

$$
\begin{aligned}
& \boldsymbol{\nabla} \times \mathbf{B}_{a}-\dot{\mathbf{E}}_{a}=g_{a \mathrm{AA}}\left(\mathbf{E}_{0} \times \boldsymbol{\nabla} a-\dot{a} \mathbf{B}_{0}\right)+g_{a A \mathrm{~B}}\left(\mathbf{B}_{0} \times \boldsymbol{\nabla} a+\dot{a} \mathbf{E}_{0}\right), \\
& \nabla \times \mathbf{E}_{a}+\dot{\mathbf{B}}_{a}=-g_{a \mathrm{aB}}\left(\mathbf{B}_{0} \times \boldsymbol{\nabla} a+\dot{a} \mathbf{E}_{0}\right)-g_{a \mathrm{AB}}\left(\mathbf{E}_{0} \times \nabla a-\dot{a} \mathbf{B}_{0}\right), \\
& \nabla \cdot \mathbf{B}_{a}=-g_{a \mathrm{BB}} \mathbf{E}_{0} \cdot \boldsymbol{\nabla} a+g_{a \mathrm{AB}} \mathbf{B}_{0} \cdot \boldsymbol{\nabla} a, \\
& \nabla \cdot \mathbf{E}_{a}=g_{a \mathrm{AA}} \mathbf{B}_{0} \cdot \boldsymbol{\nabla} a-g_{a \mathrm{AB}} \mathbf{E}_{0} \cdot \boldsymbol{\nabla} a, \\
& \left(\partial^{2}-m_{a}^{2}\right) a=\left(g_{a \mathrm{AA}}+g_{a \mathrm{BB}}\right) \mathbf{E}_{0} \cdot \mathbf{B}_{0}+g_{a \mathrm{AB}}\left(\mathbf{E}_{0}^{2}-\mathbf{B}_{0}^{2}\right),
\end{aligned}
$$

where we separated external fields sustained in the detector and axion-induced fields.

Electromagnetic Couplings of Axions

Anton V. Sokolov, Andreas Ringwald

Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
E-mail: anton.sokolov@desy.de, andreas.ringwald@desy.de

$$
\begin{aligned}
\oint \operatorname{Re}(\mathbf{S}) \cdot \hat{n} d s & =\frac{j \omega_{a} \epsilon_{0} c g_{a \gamma \gamma} \sqrt{2}\left\langle a_{0}\right\rangle}{4} \int\left(\mathbf{E}_{1} \cdot \mathbf{B}_{0}^{*}-\mathbf{E}_{1}^{*} \cdot \mathbf{B}_{0}\right) d \tau+\frac{j \omega_{a} \epsilon_{0} c g_{\alpha B B} \sqrt{2}\left\langle a_{0}\right\rangle}{4} \int\left(\mathbf{B}_{1}^{*} \cdot \mathbf{E}_{0}-\mathbf{B}_{1} \cdot \mathbf{E}_{0}^{*}\right) d \tau \\
& +\frac{j \omega_{a} g_{\alpha A B} \sqrt{2}\left\langle a_{0}\right\rangle}{4 \mu_{0}} \int\left(\mathbf{B}_{1} \cdot \mathbf{B}_{0}^{*}-\mathbf{B}_{1}^{*} \cdot \mathbf{B}_{0}\right) d \tau+\frac{j \omega_{a} g_{\alpha A B} \epsilon_{0} \sqrt{2}\left\langle a_{0}\right\rangle}{4} \int\left(\mathbf{E}_{1}^{*} \cdot \mathbf{E}_{0}-\mathbf{E}_{1} \cdot \mathbf{E}_{0}^{*}\right) d \tau \\
& -\frac{1}{4} \int\left(\mathbf{E}_{1} \cdot \mathbf{J}_{e 1}^{*}+\mathbf{E}_{1}^{*} \cdot \mathbf{J}_{e 1}\right) d \tau
\end{aligned}
$$

AXION MAXWELL EQUATIONS

Classical equations of motion corresponding to this Lagrangian are the axion Maxwell equations:

$$
\begin{aligned}
& \partial_{\mu} F^{\mu \nu}-g_{a \wedge \wedge} \partial_{\mu} a F^{d \mu \nu}+g_{a \wedge \mathrm{~B}} \partial_{\mu} F^{\mu \nu}-\frac{e^{2} a}{4 \pi^{2} v_{a}} j_{m}^{j_{m}^{d \nu}}=\bar{j}_{e}^{\nu}, \\
& \partial_{\mu} F^{d \mu \nu}+g_{\mathrm{aBB}} \partial_{\mu} a F^{\mu \nu}-g_{a \wedge \mathrm{~B}} \partial_{\mu} F^{d \mu \nu}=j_{m}^{\nu}, \\
& \left(\partial^{2}-m_{a}^{2}\right) a=-\frac{1}{4}\left(g_{a \wedge \Lambda}+g_{a \mathrm{BB}}\right) F_{\mu \mu} F^{d \mu \nu}-\frac{1}{2} g_{a \wedge \mathrm{~B}} F_{\mu \mu} F^{\mu \nu}
\end{aligned}
$$

In the experimentally relevant case, in terms of electric and magnetic fields:

$$
\begin{aligned}
& \boldsymbol{\nabla} \times \mathbf{B}_{a}-\dot{\mathbf{E}}_{a}=g_{a \mathrm{AA}}\left(\mathbf{E}_{0} \times \boldsymbol{\nabla} a-\dot{a} \mathbf{B}_{0}\right)+g_{a A \mathrm{~B}}\left(\mathbf{B}_{0} \times \boldsymbol{\nabla} a+\dot{a} \mathbf{E}_{0}\right), \\
& \boldsymbol{\nabla} \times \mathbf{E}_{a}+\dot{\mathbf{B}}_{a}=-g_{a \mathrm{aB}}\left(\mathbf{B}_{0} \times \nabla a+\dot{\boldsymbol{a}} \mathbf{E}_{0}\right)-g_{a \mathrm{AB}}\left(\mathbf{E}_{0} \times \nabla a-\dot{a} \mathbf{B}_{0}\right), \\
& \nabla \cdot \mathbf{B}_{a}=-g_{a \mathrm{BB}} \mathbf{E}_{0} \cdot \boldsymbol{\nabla} a+g_{a A \mathrm{~B}} \mathbf{B}_{0} \cdot \boldsymbol{\nabla} a, \\
& \nabla \cdot \mathbf{E}_{a}=g_{a \mathrm{AA}} \mathbf{B}_{0} \cdot \boldsymbol{\nabla} a-g_{a \mathrm{AB}} \mathbf{E}_{0} \cdot \boldsymbol{\nabla} a, \\
& \left(\partial^{2}-m_{a}^{2}\right) a=\left(g_{a \mathrm{AA}}+g_{a \mathrm{BB}}\right) \mathbf{E}_{0} \cdot \mathbf{B}_{0}+g_{a \mathrm{AB}}\left(\mathbf{E}_{0}^{2}-\mathbf{B}_{0}^{2}\right),
\end{aligned}
$$

where we separated external fields sustained in the detector and axion-induced fields.

Electromagnetic Couplings of Axions

Anton V. Sokolov, Andreas Ringwald

Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
E-mail: anton.sokolov@desy.de, andreas.ringwald@desy.de

$$
\begin{aligned}
\oint \operatorname{Re}(\mathbf{S}) \cdot \hat{n} d s & =\frac{j \omega_{a} \epsilon_{0} \delta_{a q \gamma} \sqrt{2}\left\langle a_{0}\right\rangle}{4} \int\left(\mathbf{E}_{1} \cdot \mathbf{B}_{0}^{*}-\mathbf{E}_{1}^{*} \cdot \mathbf{B}_{0}\right) d \tau+\frac{j \omega_{a} \epsilon_{0} c_{a} g_{a B} \sqrt{2}\left\langle a_{0}\right\rangle}{4} \int\left(\mathbf{B}_{1}^{*} \cdot \mathbf{E}_{0}-\mathbf{B}_{1} \cdot \mathbf{E}_{0}^{*}\right) d \tau \\
& +\frac{j \omega_{a} g_{a A} B \sqrt{2}\left\langle a_{0}\right\rangle}{4 \mu_{0}} \int\left(\mathbf{B}_{1} \cdot \mathbf{B}_{0}^{*}-\mathbf{B}_{1}^{*} \cdot \mathbf{B}_{0}\right) d \tau+\frac{j \omega_{a} g_{\alpha A B} \sigma_{0} \sqrt{2}\left\langle a_{0}\right\rangle}{4} \int\left(\mathbf{E}_{1}^{*} \cdot \mathbf{E}_{0}-\mathbf{E}_{1} \cdot \mathbf{E}_{0}^{*}\right) d \tau \\
& -\frac{1}{4} \int\left(\mathbf{E}_{1} \cdot \mathbf{J}_{e 1}^{*}+\mathbf{E}_{1}^{*} \cdot \mathbf{J}_{e l}\right) d \tau
\end{aligned}
$$

Constant DC Background Magnetic field

AXION MAXWELL EQUATIONS

Classical equations of motion corresponding to this Lagrangian are the axion Maxwell equations:

$$
\begin{aligned}
& \partial_{\mu} F^{\mu \nu}-g_{a A A} \partial_{\mu} a F^{d \mu \nu}+g_{a \wedge \mathrm{~B}} \partial_{\mu} a F^{\mu \nu}-\frac{e^{2} a}{4 \pi^{2} v_{a}} j_{m}^{\phi \nu}=\bar{j}_{e}^{\nu}, \\
& \partial_{\mu} F^{d \mu \nu}+g_{a \mathrm{BB}} \partial_{\mu} a F^{\mu \nu}-g_{a \mathrm{AB}} \partial_{\mu} a F^{d \mu \nu}=j_{m}^{\nu}, \\
& \left(\partial^{2}-m_{a}^{2}\right) a=-\frac{1}{4}\left(g_{a A A}+g_{a \mathrm{BB}}\right) F_{\mu \nu} F^{d \mu \nu}-\frac{1}{2} g_{a \wedge \mathrm{~B}} F_{\mu \nu} F^{\mu \nu}
\end{aligned}
$$

In the experimentally relevant case, in terms of electric and magnetic fields:

$$
\begin{aligned}
& \boldsymbol{\nabla} \times \mathbf{B}_{a}-\dot{\mathbf{E}}_{a}=g_{a \mathrm{AA}}\left(\mathbf{E}_{0} \times \boldsymbol{\nabla} a-\dot{a} \mathbf{B}_{0}\right)+g_{a \mathrm{AB}}\left(\mathbf{B}_{0} \times \boldsymbol{\nabla} a+\dot{a} \mathbf{E}_{0}\right), \\
& \nabla \times \mathbf{E}_{a}+\dot{\mathbf{B}}_{a}=-g_{a \mathrm{aB}}\left(\mathbf{B}_{0} \times \nabla a+\dot{a} \mathbf{E}_{0}\right)-g_{a \mathrm{AB}}\left(\mathbf{E}_{0} \times \nabla a-\dot{a} \mathbf{B}_{0}\right), \\
& \nabla \cdot \mathbf{B}_{a}=-g_{a \mathrm{BB}} \mathbf{E}_{0} \cdot \boldsymbol{\nabla} a+g_{a \mathrm{AB}} \mathbf{B}_{0} \cdot \boldsymbol{\nabla} a, \\
& \nabla \cdot \mathbf{E}_{a}=g_{a \mathrm{AA}} \mathbf{B}_{0} \cdot \boldsymbol{\nabla} a-g_{a \mathrm{AB}} \mathbf{E}_{0} \cdot \boldsymbol{\nabla} a, \\
& \left(\partial^{2}-m_{a}^{2}\right) a=\left(g_{a \mathrm{AA}}+g_{a \mathrm{BB}}\right) \mathbf{E}_{0} \cdot \mathbf{B}_{0}+g_{a \mathrm{AB}}\left(\mathbf{E}_{0}^{2}-\mathbf{B}_{0}^{2}\right),
\end{aligned}
$$

where we separated external fields sustained in the detector and axion-induced fields.

Electromagnetic Couplings of Axions

Anton V. Sokolov, Andreas Ringwald

Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
E-mail: anton.sokolov@desy.de, andreas.ringwald@desy.de

$$
\begin{aligned}
\oint \operatorname{Re}(\mathbf{S}) \cdot \hat{n} d s & =\frac{j \omega_{a} \varepsilon_{0} \varepsilon_{a q \gamma} \sqrt{2}\left\langle a_{0}\right\rangle}{4} \int\left(\mathbf{E}_{1} \cdot \mathbf{B}_{0}^{*}-\mathbf{E}_{1}^{*} \cdot \mathbf{B}_{0}\right) d \tau+\frac{j \omega_{a} \epsilon_{0} c c_{a B B} \sqrt{2}\left\langle a_{0}\right\rangle}{4} \int\left(\mathbf{B}_{1}^{*} \cdot \mathbf{E}_{0}-\mathbf{B}_{1} \cdot \mathbf{E}_{0}^{*}\right) d \tau \\
& +\frac{j \omega_{a} g_{\alpha A A} \sqrt{2}\left\langle a_{0}\right\rangle}{4 \mu_{0}} \int\left(\mathbf{B}_{1} \cdot \mathbf{B}_{0}^{*}-\mathbf{B}_{1}^{*} \cdot \mathbf{B}_{0}\right) d \tau+\frac{j \omega_{a} g_{a A B} \varepsilon_{0} \sqrt{2}\left\langle a_{0}\right\rangle}{4} \int\left(\mathbf{E}_{1}^{*} \cdot \mathbf{E}_{0}-\mathbf{E}_{1} \cdot \mathbf{E}_{0}^{*}\right) d \tau \\
& -\frac{1}{4} \int\left(\mathbf{E}_{1} \cdot \mathbf{J}_{e 1}^{*}+\mathbf{E}_{1}^{*} \cdot \mathbf{J}_{\epsilon 1}\right) d \tau
\end{aligned}
$$

Constant DC Background Magnetic field

AXION MAXWELL EQUATIONS

Classical equations of motion corresponding to this Lagrangian are the axion Maxwell equations:

$$
\begin{aligned}
& \partial_{\mu} F^{\mu \nu}-g_{a \wedge A} \partial_{\mu} a F^{d \mu \nu}+g_{a \wedge \mathrm{~B}} \partial_{\mu} a F^{\mu \nu}-\frac{e^{2} a}{4 \pi^{2} v_{a}} j_{m}^{\phi \nu}=\bar{j}_{e}^{\nu}, \\
& \partial_{\mu} F^{d \mu \nu}+g_{a \mathrm{BB}} \partial_{\mu} a F^{\mu \nu}-g_{a \mathrm{AB}} \partial_{\mu} a F^{d \mu \nu}=j_{m}^{\nu}, \\
& \left(\partial^{2}-m_{a}^{2}\right) a=-\frac{1}{4}\left(g_{a \mathrm{AA}}+g_{a \mathrm{BB}}\right) F_{\mu \nu} F^{d \mu \nu}-\frac{1}{2} g_{a \wedge \mathrm{~A}} F_{\mu \nu} F^{\mu \nu}
\end{aligned}
$$

In the experimentally relevant case, in terms of electric and magnetic fields:

$$
\begin{aligned}
& \boldsymbol{\nabla} \times \mathbf{B}_{a}-\dot{\mathbf{E}}_{a}=g_{a A \mathrm{~A}}\left(\mathbf{E}_{0} \times \boldsymbol{\nabla} a-\dot{a} \mathbf{B}_{0}\right)+g_{a \mathrm{AB}}\left(\mathbf{B}_{0} \times \boldsymbol{\nabla} a+\dot{a} \mathbf{E}_{0}\right), \\
& \nabla \times \mathbf{E}_{a}+\dot{\mathbf{B}}_{a}=-g_{a \mathrm{aB}}\left(\mathbf{B}_{0} \times \boldsymbol{\nabla} a+\dot{a} \mathbf{E}_{0}\right)-g_{a \mathrm{AB}}\left(\mathbf{E}_{0} \times \nabla a-\dot{a} \mathbf{B}_{0}\right), \\
& \nabla \cdot \mathbf{B}_{a}=-g_{a \mathrm{BB}} \mathbf{E}_{0} \cdot \boldsymbol{\nabla} a+g_{a A \mathrm{~A}} \mathbf{B}_{0} \cdot \boldsymbol{\nabla} a, \\
& \nabla \cdot \mathbf{E}_{a}=g_{a \mathrm{AA}} \mathbf{B}_{0} \cdot \boldsymbol{\nabla} a-g_{a \mathrm{AB}} \mathbf{E}_{0} \cdot \boldsymbol{\nabla} a, \\
& \left(\partial^{2}-m_{a}^{2}\right) a=\left(g_{a \mathrm{AA}}+g_{a \mathrm{BB}}\right) \mathbf{E}_{0} \cdot \mathbf{B}_{0}+g_{a \mathrm{AB}}\left(\mathbf{E}_{0}^{2}-\mathbf{B}_{0}^{2}\right),
\end{aligned}
$$

where we separated external fields sustained in the detector and axion-induced fields.

$$
\begin{aligned}
\oint \operatorname{Re}(\mathbf{S}) \cdot \hat{n} d s & =\frac{j \omega_{a} \epsilon_{0} c g_{a \gamma \gamma}}{4} \int\left(\mathbf{E}_{1} \cdot \tilde{a}^{*} \vec{B}_{0}-\mathbf{E}_{1}^{*} \cdot \tilde{a} \vec{B}_{0}\right) d \tau \\
& +\frac{j \omega_{a} g_{\alpha A B}}{4 \mu_{0}} \int\left(\mathbf{B}_{1} \cdot \tilde{a}^{*} \vec{B}_{0}-\mathbf{B}_{1}^{*} \cdot \tilde{a} \vec{B}_{0}\right) d \tau \\
& -\frac{1}{4} \int\left(\mathbf{E}_{1} \cdot \mathbf{J}_{e 1}^{*}+\mathbf{E}_{1}^{*} \cdot \mathbf{J}_{e 1}\right) d \tau
\end{aligned}
$$

Electromagnetic Couplings of Axions

Anton V. Sokolov, Andreas Ringwald

Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
E-mail: anton.sokolov@desy.de, andreas.ringwald@desy.de

$$
\begin{aligned}
\oint \operatorname{Re}(\mathbf{S}) \cdot \hat{n} d s & =\frac{j \omega_{a} \varepsilon_{0} \varepsilon_{a q \gamma} \sqrt{2}\left\langle a_{0}\right\rangle}{4} \int\left(\mathbf{E}_{1} \cdot \mathbf{B}_{0}^{*}-\mathbf{E}_{1}^{*} \cdot \mathbf{B}_{0}\right) d \tau+\frac{j \omega_{a} \epsilon_{0} c c_{a B B} \sqrt{2}\left\langle a_{0}\right\rangle}{4} \int\left(\mathbf{B}_{1}^{*} \cdot \mathbf{E}_{0}-\mathbf{B}_{1} \cdot \mathbf{E}_{0}^{*}\right) d \tau \\
& +\frac{j \omega_{a} g_{\alpha A A} \sqrt{2}\left\langle a_{0}\right\rangle}{4 \mu_{0}} \int\left(\mathbf{B}_{1} \cdot \mathbf{B}_{0}^{*}-\mathbf{B}_{1}^{*} \cdot \mathbf{B}_{0}\right) d \tau+\frac{j \omega_{a} g_{a A B} \varepsilon_{0} \sqrt{2}\left\langle a_{0}\right\rangle}{4} \int\left(\mathbf{E}_{1}^{*} \cdot \mathbf{E}_{0}-\mathbf{E}_{1} \cdot \mathbf{E}_{0}^{*}\right) d \tau \\
& -\frac{1}{4} \int\left(\mathbf{E}_{1} \cdot \mathbf{J}_{e 1}^{*}+\mathbf{E}_{1}^{*} \cdot \mathbf{J}_{\epsilon 1}\right) d \tau
\end{aligned}
$$

Constant DC Background Magnetic field

AXION MAXWELL EQUATIONS

Classical equations of motion corresponding to this Lagrangian are the axion Maxwell equations:

$$
\begin{aligned}
& \partial_{\mu} F^{\mu \nu}-g_{a \wedge \mathrm{~A}} \partial_{\mu} a F^{d \mu \nu}+g_{a \wedge \mathrm{~B}} \partial_{\mu} a F^{\mu \nu}-\frac{e^{2} a}{4 \pi^{2} v_{a}} j_{m}^{\phi \nu}=\bar{j}_{e}^{\nu}, \\
& \partial_{\mu} F^{d \mu \nu}+g_{a \mathrm{BB}} \partial_{\mu} a F^{\mu \nu}-g_{a \mathrm{AB}} \partial_{\mu} a F^{d \mu \nu}=j_{m}^{\nu}, \\
& \left(\partial^{2}-m_{a}^{2}\right) a=-\frac{1}{4}\left(g_{a \wedge A}+g_{a \mathrm{BB}}\right) F_{\mu \nu} F^{d \mu \nu}-\frac{1}{2} g_{a \wedge \mathrm{~B}} F_{\mu \nu} F^{\mu \nu}
\end{aligned}
$$

In the experimentally relevant case, in terms of electric and magnetic fields:

$$
\begin{aligned}
& \boldsymbol{\nabla} \times \mathbf{B}_{a}-\dot{\mathbf{E}}_{a}=g_{a \mathrm{AA}}\left(\mathbf{E}_{0} \times \boldsymbol{\nabla} a-\dot{a} \mathbf{B}_{0}\right)+g_{a A \mathrm{~B}}\left(\mathbf{B}_{0} \times \boldsymbol{\nabla} a+\dot{a} \mathbf{E}_{0}\right), \\
& \boldsymbol{\nabla} \times \mathbf{E}_{a}+\dot{\mathbf{B}}_{a}=-g_{a \mathrm{aB}}\left(\mathbf{B}_{0} \times \nabla a+\dot{a} \mathbf{E}_{0}\right)-g_{a \mathrm{AB}}\left(\mathbf{E}_{0} \times \boldsymbol{\nabla} a-\dot{a} \mathbf{B}_{0}\right), \\
& \nabla \cdot \mathbf{B}_{a}=-g_{a \mathrm{BB}} \mathbf{E}_{0} \cdot \boldsymbol{\nabla} a+g_{a \mathrm{AB}} \mathbf{B}_{0} \cdot \boldsymbol{\nabla} a, \\
& \nabla \cdot \mathbf{E}_{a}=g_{a \mathrm{AA}} \mathbf{B}_{0} \cdot \boldsymbol{\nabla} a-g_{a \mathrm{AB}} \mathbf{E}_{0} \cdot \boldsymbol{\nabla} a, \\
& \left(\partial^{2}-m_{a}^{2}\right) a=\left(g_{a \mathrm{AA}}+g_{a \mathrm{BB}}\right) \mathbf{E}_{0} \cdot \mathbf{B}_{0}+g_{a \mathrm{AB}}\left(\mathbf{E}_{0}^{2}-\mathbf{B}_{0}^{2}\right),
\end{aligned}
$$

where we separated external fields sustained in the detector and axion-induced fields.

$$
\begin{aligned}
& \oint \operatorname{Re}(\mathbf{S}) \cdot \hat{n} d s=\frac{j \omega_{a} \epsilon_{0} c g_{a \gamma \gamma}}{4} \int\left(\mathbf{E}_{1} \cdot \tilde{a}^{*} \vec{B}_{0}-\mathbf{E}_{1}^{*} \cdot \tilde{a} \vec{B}_{0}\right) d \tau \\
&+\frac{j \omega_{a} g_{\alpha A B}}{4 \mu_{0}} \int\left(\mathbf{B}_{1} \cdot \tilde{a}^{*} \vec{B}_{0}-\mathbf{B}_{1}^{*} \cdot \tilde{a} \vec{B}_{0}\right) d \tau \\
&-\frac{1}{4} \int\left(\mathbf{E}_{1} \cdot \mathbf{J}_{e 1}^{*}+\mathbf{E}_{1}^{*} \cdot \mathbf{J}_{e 1}\right) d \tau \\
& \int\left(\mathbf{B}_{1} \cdot \tilde{a}^{*} \vec{B}_{0}-\mathbf{B}_{1}^{*} \cdot \tilde{a} \vec{B}_{0}\right) d \tau=0
\end{aligned}
$$

Electromagnetic Couplings of Axions

Anton V. Sokolov, Andreas Ringwald

Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
E-mail: anton.sokolov@desy.de, andreas.ringwald@desy.de

$$
\begin{aligned}
\oint \operatorname{Re}(\mathbf{S}) \cdot \hat{n} d s & =\frac{j \omega_{a} \varepsilon_{0} \varepsilon_{a q \gamma} \sqrt{2}\left\langle a_{0}\right\rangle}{4} \int\left(\mathbf{E}_{1} \cdot \mathbf{B}_{0}^{*}-\mathbf{E}_{1}^{*} \cdot \mathbf{B}_{0}\right) d \tau+\frac{j \omega_{a} \epsilon_{0} c c_{a B B} \sqrt{2}\left\langle a_{0}\right\rangle}{4} \int\left(\mathbf{B}_{1}^{*} \cdot \mathbf{E}_{0}-\mathbf{B}_{1} \cdot \mathbf{E}_{0}^{*}\right) d \tau \\
& +\frac{j \omega_{a} g_{\alpha A A} \sqrt{2}\left\langle a_{0}\right\rangle}{4 \mu_{0}} \int\left(\mathbf{B}_{1} \cdot \mathbf{B}_{0}^{*}-\mathbf{B}_{1}^{*} \cdot \mathbf{B}_{0}\right) d \tau+\frac{j \omega_{a} g_{a A B} \varepsilon_{0} \sqrt{2}\left\langle a_{0}\right\rangle}{4} \int\left(\mathbf{E}_{1}^{*} \cdot \mathbf{E}_{0}-\mathbf{E}_{1} \cdot \mathbf{E}_{0}^{*}\right) d \tau \\
& -\frac{1}{4} \int\left(\mathbf{E}_{1} \cdot \mathbf{J}_{e 1}^{*}+\mathbf{E}_{1}^{*} \cdot \mathbf{J}_{\epsilon 1}\right) d \tau
\end{aligned}
$$

Constant DC Background Magnetic field

AXION MAXWELL EQUATIONS

Classical equations of motion corresponding to this Lagrangian are the axion Maxwell equations:

$$
\begin{aligned}
& \partial_{\mu} F^{\mu \nu}-g_{a \wedge \mathrm{~A}} \partial_{\mu} a F^{d \mu \nu}+g_{a \wedge \mathrm{~B}} \partial_{\mu} a F^{\mu \nu}-\frac{e^{2} a}{4 \pi^{2} v_{a}} j_{m}^{\phi \nu}=\bar{j}_{e}^{\nu}, \\
& \partial_{\mu} F^{d \mu \nu}+g_{a \mathrm{BB}} \partial_{\mu} a F^{\mu \nu}-g_{a \mathrm{AB}} \partial_{\mu} a F^{d \mu \nu}=j_{m}^{\nu}, \\
& \left(\partial^{2}-m_{a}^{2}\right) a=-\frac{1}{4}\left(g_{a \wedge A}+g_{a \mathrm{BB}}\right) F_{\mu \nu} F^{d \mu \nu}-\frac{1}{2} g_{a \wedge \mathrm{~B}} F_{\mu \nu} F^{\mu \nu}
\end{aligned}
$$

In the experimentally relevant case, in terms of electric and magnetic fields:

$$
\begin{aligned}
& \boldsymbol{\nabla} \times \mathbf{B}_{a}-\dot{\mathbf{E}}_{a}=g_{a \mathrm{AA}}\left(\mathbf{E}_{0} \times \boldsymbol{\nabla} a-\dot{a} \mathbf{B}_{0}\right)+g_{a A \mathrm{~B}}\left(\mathbf{B}_{0} \times \boldsymbol{\nabla} a+\dot{a} \mathbf{E}_{0}\right), \\
& \boldsymbol{\nabla} \times \mathbf{E}_{a}+\dot{\mathbf{B}}_{a}=-g_{a \mathrm{aB}}\left(\mathbf{B}_{0} \times \nabla a+\dot{\boldsymbol{a}} \mathbf{E}_{0}\right)-g_{\mathrm{aAB}}\left(\mathbf{E}_{0} \times \nabla a-\dot{a} \mathbf{B}_{0}\right), \\
& \nabla \cdot \mathbf{B}_{a}=-g_{a \mathrm{BB}} \mathbf{E}_{0} \cdot \boldsymbol{\nabla} a+g_{a \mathrm{AB}} \mathbf{B}_{0} \cdot \boldsymbol{\nabla} a, \\
& \nabla \cdot \mathbf{E}_{a}=g_{a \mathrm{AA}} \mathbf{B}_{0} \cdot \boldsymbol{\nabla} a-g_{a \mathrm{AB}} \mathbf{E}_{0} \cdot \boldsymbol{\nabla} a, \\
& \left(\partial^{2}-m_{a}^{2}\right) a=\left(g_{a \mathrm{AA}}+g_{a \mathrm{BB}}\right) \mathbf{E}_{0} \cdot \mathbf{B}_{0}+g_{a \mathrm{AB}}\left(\mathbf{E}_{0}^{2}-\mathbf{B}_{0}^{2}\right),
\end{aligned}
$$

where we separated external fields sustained in the detector and axion-induced fields.

$$
\begin{gathered}
\oint \operatorname{Re}(\mathbf{S}) \cdot \hat{n} d s=\frac{j \omega_{a} \epsilon_{0} c g_{a r y}}{4} \int\left(\mathbf{E}_{1} \cdot \tilde{a}^{*} \vec{B}_{0}-\mathbf{E}_{1}^{*} \cdot \tilde{a} \vec{B}_{0}\right) d \tau \\
\frac{j \omega_{0} g_{\sim A B}}{+\frac{1}{4} \int\left(\mathbf{E}_{1} \cdot \mathbf{J}_{e 1}^{*}+\mathbf{E}_{1}^{*} \cdot \mathbf{J}_{e 1}\right) d \tau} \\
\int\left(\mathbf{B}_{1} \cdot \tilde{a}^{*} \vec{B}_{0}-\mathbf{B}_{1}^{*} \cdot \tilde{a} \vec{B}_{0}\right) d \tau=0
\end{gathered}
$$

Electromagnetic Couplings of Axions

Anton V. Sokolov, Andreas Ringwald

Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
E-mail: anton.sokolov@desy.de, andreas.ringwald@desy.de

$$
\begin{aligned}
\oint \operatorname{Re}(\mathbf{S}) \cdot \hat{n} d s & =\frac{j \omega_{a} \varepsilon_{0} \varepsilon_{a q \gamma} \sqrt{2}\left\langle a_{0}\right\rangle}{4} \int\left(\mathbf{E}_{1} \cdot \mathbf{B}_{0}^{*}-\mathbf{E}_{1}^{*} \cdot \mathbf{B}_{0}\right) d \tau+\frac{j \omega_{a} \epsilon_{0} c c_{a B B} \sqrt{2}\left\langle a_{0}\right\rangle}{4} \int\left(\mathbf{B}_{1}^{*} \cdot \mathbf{E}_{0}-\mathbf{B}_{1} \cdot \mathbf{E}_{0}^{*}\right) d \tau \\
& +\frac{j \omega_{a} g_{\alpha A A} \sqrt{2}\left\langle a_{0}\right\rangle}{4 \mu_{0}} \int\left(\mathbf{B}_{1} \cdot \mathbf{B}_{0}^{*}-\mathbf{B}_{1}^{*} \cdot \mathbf{B}_{0}\right) d \tau+\frac{j \omega_{a} g_{a A B} \varepsilon_{0} \sqrt{2}\left\langle a_{0}\right\rangle}{4} \int\left(\mathbf{E}_{1}^{*} \cdot \mathbf{E}_{0}-\mathbf{E}_{1} \cdot \mathbf{E}_{0}^{*}\right) d \tau \\
& -\frac{1}{4} \int\left(\mathbf{E}_{1} \cdot \mathbf{J}_{e 1}^{*}+\mathbf{E}_{1}^{*} \cdot \mathbf{J}_{\epsilon 1}\right) d \tau
\end{aligned}
$$

Constant DC Background Magnetic field

AXION MAXWELL EQUATIONS

Classical equations of motion corresponding to this Lagrangian are the axion Maxwell equations:

$$
\begin{aligned}
& \partial_{\mu} F^{\mu \nu}-g_{a \wedge \mathrm{~A}} \partial_{\mu} a F^{d \mu \nu}+g_{a \wedge \mathrm{~B}} \partial_{\mu} a F^{\mu \nu}-\frac{e^{2} a}{4 \pi^{2} v_{a}} j_{m}^{\phi \nu}=\bar{j}_{e}^{\nu}, \\
& \partial_{\mu} F^{d \mu \nu}+g_{a \mathrm{BB}} \partial_{\mu} a F^{\mu \nu}-g_{a \mathrm{AB}} \partial_{\mu} a F^{d \mu \nu}=j_{m}^{\nu}, \\
& \left(\partial^{2}-m_{a}^{2}\right) a=-\frac{1}{4}\left(g_{a \wedge A}+g_{a \mathrm{BB}}\right) F_{\mu \nu} F^{d \mu \nu}-\frac{1}{2} g_{a \wedge \mathrm{~B}} F_{\mu \nu} F^{\mu \nu}
\end{aligned}
$$

In the experimentally relevant case, in terms of electric and magnetic fields:

$$
\begin{aligned}
& \boldsymbol{\nabla} \times \mathbf{B}_{a}-\dot{\mathbf{E}}_{a}=g_{a \mathrm{AA}}\left(\mathbf{E}_{0} \times \boldsymbol{\nabla} a-\dot{a} \mathbf{B}_{0}\right)+g_{a \mathrm{AB}}\left(\mathbf{B}_{0} \times \boldsymbol{\nabla} a+\dot{a} \mathbf{E}_{0}\right), \\
& \nabla \times \mathbf{E}_{a}+\dot{\mathbf{B}}_{a}=-g_{a \mathrm{BB}}\left(\mathbf{B}_{0} \times \nabla a+\dot{a} \mathbf{E}_{0}\right)-g_{a \mathrm{AB}}\left(\mathbf{E}_{0} \times \nabla a-\dot{a} \mathbf{B}_{0}\right), \\
& \nabla \cdot \mathbf{B}_{a}=-g_{a \mathrm{BB}} \mathbf{E}_{0} \cdot \boldsymbol{\nabla} a+g_{a \mathrm{AB}} \mathbf{B}_{0} \cdot \boldsymbol{\nabla} a, \\
& \nabla \cdot \mathbf{E}_{a}=g_{a \mathrm{AA}} \mathbf{B}_{0} \cdot \boldsymbol{\nabla} a-g_{a \mathrm{AB}} \mathbf{E}_{0} \cdot \boldsymbol{\nabla} a, \\
& \left(\partial^{2}-m_{a}^{2}\right) a=\left(g_{a \mathrm{AA}}+g_{a \mathrm{BB}}\right) \mathbf{E}_{0} \cdot \mathbf{B}_{0}+g_{a \mathrm{AB}}\left(\mathbf{E}_{0}^{2}-\mathbf{B}_{0}^{2}\right),
\end{aligned}
$$

where we separated external fields sustained in the detector and axion-induced fields.

$$
\begin{gathered}
\oint \operatorname{Re}(\mathbf{S}) \cdot \hat{n} d s=\frac{j \omega_{a} \epsilon_{0} c g_{a r y}}{4} \int\left(\mathbf{E}_{1} \cdot \tilde{a}^{*} \vec{B}_{0}-\mathbf{E}_{1}^{*} \cdot \tilde{a} \vec{B}_{0}\right) d \tau \\
\frac{j \omega_{a} g_{a A B}}{+\frac{1}{4} \int\left(\mathbf{E}_{1} \cdot \mathbf{J}_{e 1}^{*}+\mathbf{E}_{1}^{*} \cdot \mathbf{J}_{e 1}\right) d \tau} \\
\int\left(\mathbf{B}_{1} \cdot \tilde{a}^{*} \vec{B}_{0}-\mathbf{B}_{1}^{*} \cdot \tilde{a} \vec{B}_{0}\right) d \tau=0
\end{gathered}
$$

in constant magnetic field, needs a gradient field to be non zero

Electromagnetic Couplings of Axions

Anton V. Sokolov, Andreas Ringwald

Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
E-mail: anton.sokolov@desy.de, andreas.ringwald@desy.de

$$
\begin{aligned}
\oint \operatorname{Re}(\mathbf{S}) \cdot \hat{n} d s & =\frac{j \omega_{a} \epsilon_{0} c g_{a \gamma \gamma} \sqrt{2}\left\langle a_{0}\right\rangle}{4} \int\left(\mathbf{E}_{1} \cdot \mathbf{B}_{0}^{*}-\mathbf{E}_{1}^{*} \cdot \mathbf{B}_{0}\right) d \tau+\frac{j \omega_{a} \epsilon_{0} c g_{\alpha B B} \sqrt{2}\left\langle a_{0}\right\rangle}{4} \int\left(\mathbf{B}_{1}^{*} \cdot \mathbf{E}_{0}-\mathbf{B}_{1} \cdot \mathbf{E}_{0}^{*}\right) d \tau \\
& +\frac{j \omega_{a} g_{\alpha A B} \sqrt{2}\left\langle a_{0}\right\rangle}{4 \mu_{0}} \int\left(\mathbf{B}_{1} \cdot \mathbf{B}_{0}^{*}-\mathbf{B}_{1}^{*} \cdot \mathbf{B}_{0}\right) d \tau+\frac{j \omega_{a} g_{\alpha A B} \epsilon_{0} \sqrt{2}\left\langle a_{0}\right\rangle}{4} \int\left(\mathbf{E}_{1}^{*} \cdot \mathbf{E}_{0}-\mathbf{E}_{1} \cdot \mathbf{E}_{0}^{*}\right) d \tau \\
& -\frac{1}{4} \int\left(\mathbf{E}_{1} \cdot \mathbf{J}_{e 1}^{*}+\mathbf{E}_{1}^{*} \cdot \mathbf{J}_{e 1}\right) d \tau
\end{aligned}
$$

Constant DC Background Magnetic field

AXION MAXWELL EQUATIONS

Classical equations of motion corresponding to this Lagrangian are the axion Maxwell equations:

$$
\begin{aligned}
& \partial_{\mu} F^{\mu \nu}-g_{a \wedge \mathrm{~A}} \partial_{\mu} a F^{d \mu \nu}+g_{a \wedge \mathrm{~B}} \partial_{\mu} a F^{\mu \nu}-\frac{e^{2} a}{4 \pi^{2} v_{a}} j_{m}^{\phi \nu}=\bar{j}_{e}^{\nu}, \\
& \partial_{\mu} F^{d \mu \nu}+g_{a \mathrm{BB}} \partial_{\mu} a F^{\mu \nu}-g_{a \mathrm{AB}} \partial_{\mu} a F^{d \mu \nu}=j_{m}^{\nu}, \\
& \left(\partial^{2}-m_{a}^{2}\right) a=-\frac{1}{4}\left(g_{a \wedge A}+g_{a \mathrm{BB}}\right) F_{\mu \nu} F^{d \mu \nu}-\frac{1}{2} g_{a \wedge \mathrm{~B}} F_{\mu \nu} F^{\mu \nu}
\end{aligned}
$$

In the experimentally relevant case, in terms of electric and magnetic fields:

$$
\begin{aligned}
& \boldsymbol{\nabla} \times \mathbf{B}_{a}-\dot{\mathbf{E}}_{a}=g_{a \mathrm{AA}}\left(\mathbf{E}_{0} \times \boldsymbol{\nabla} a-\dot{a} \mathbf{B}_{0}\right)+g_{a A \mathrm{~B}}\left(\mathbf{B}_{0} \times \boldsymbol{\nabla} a+\dot{a} \mathbf{E}_{0}\right), \\
& \boldsymbol{\nabla} \times \mathbf{E}_{a}+\dot{\mathbf{B}}_{a}=-g_{a \mathrm{aB}}\left(\mathbf{B}_{0} \times \nabla a+\dot{a} \mathbf{E}_{0}\right)-g_{a \mathrm{AB}}\left(\mathbf{E}_{0} \times \boldsymbol{\nabla} a-\dot{a} \mathbf{B}_{0}\right), \\
& \nabla \cdot \mathbf{B}_{a}=-g_{a \mathrm{BB}} \mathbf{E}_{0} \cdot \boldsymbol{\nabla} a+g_{a \mathrm{AB}} \mathbf{B}_{0} \cdot \boldsymbol{\nabla} a, \\
& \nabla \cdot \mathbf{E}_{a}=g_{a \mathrm{AA}} \mathbf{B}_{0} \cdot \boldsymbol{\nabla} a-g_{a \mathrm{AB}} \mathbf{E}_{0} \cdot \boldsymbol{\nabla} a, \\
& \left(\partial^{2}-m_{a}^{2}\right) a=\left(g_{a \mathrm{AA}}+g_{a \mathrm{BB}}\right) \mathbf{E}_{0} \cdot \mathbf{B}_{0}+g_{a \mathrm{AB}}\left(\mathbf{E}_{0}^{2}-\mathbf{B}_{0}^{2}\right),
\end{aligned}
$$

where we separated external fields sustained in the detector and axion-induced fields.

$$
\begin{gathered}
\oint \operatorname{Re}(\mathbf{S}) \cdot \hat{n} d s=\frac{j \omega_{a} \epsilon_{0} c g_{a r y}}{4} \int\left(\mathbf{E}_{1} \cdot \tilde{a}^{*} \vec{B}_{0}-\mathbf{E}_{1}^{*} \cdot \tilde{a} \vec{B}_{0}\right) d \tau \\
\frac{j \omega_{a} g_{a A B}}{+\frac{1}{4} \int\left(\mathbf{E}_{1} \cdot \mathbf{J}_{e 1}^{*}+\mathbf{E}_{1}^{*} \cdot \mathbf{J}_{e 1}\right) d \tau} \\
\int\left(\mathbf{B}_{1} \cdot \tilde{a}^{*} \vec{B}_{0}-\mathbf{B}_{1}^{*} \cdot \tilde{a} \vec{B}_{0}\right) d \tau=0
\end{gathered}
$$

in constant magnetic field, needs a gradient field to be non zero

Electromagnetic Couplings of Axions

Anton V. Sokolov, Andreas Ringwald

Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
E-mail: anton.sokolov@desy.de, andreas.ringwald@desy.de

$$
\begin{aligned}
\oint \operatorname{Re}(\mathbf{S}) \cdot \hat{n} d s & =\frac{j \omega_{a} \epsilon_{0} c g_{a \gamma \gamma} \sqrt{2}\left\langle a_{0}\right\rangle}{4} \int\left(\mathbf{E}_{1} \cdot \mathbf{B}_{0}^{*}-\mathbf{E}_{1}^{*} \cdot \mathbf{B}_{0}\right) d \tau+\frac{j \omega_{a} \epsilon_{0} c g_{\alpha B B} \sqrt{2}\left\langle a_{0}\right\rangle}{4} \int\left(\mathbf{B}_{1}^{*} \cdot \mathbf{E}_{0}-\mathbf{B}_{1} \cdot \mathbf{E}_{0}^{*}\right) d \tau \\
& +\frac{j \omega_{a} g_{\alpha A B} \sqrt{2}\left\langle a_{0}\right\rangle}{4 \mu_{0}} \int\left(\mathbf{B}_{1} \cdot \mathbf{B}_{0}^{*}-\mathbf{B}_{1}^{*} \cdot \mathbf{B}_{0}\right) d \tau+\frac{j \omega_{a} g_{\alpha A B} \epsilon_{0} \sqrt{2}\left\langle a_{0}\right\rangle}{4} \int\left(\mathbf{E}_{1}^{*} \cdot \mathbf{E}_{0}-\mathbf{E}_{1} \cdot \mathbf{E}_{0}^{*}\right) d \tau \\
& -\frac{1}{4} \int\left(\mathbf{E}_{1} \cdot \mathbf{J}_{e 1}^{*}+\mathbf{E}_{1}^{*} \cdot \mathbf{J}_{e 1}\right) d \tau
\end{aligned}
$$

Constant DC Background Magnetic field

AXION MAXWELL EQUATIONS

Classical equations of motion corresponding to this Lagrangian are the axion Maxwell equations:

$$
\begin{aligned}
& \partial_{\mu} F^{\mu \nu}-g_{a \wedge \wedge} \partial_{\mu} a F^{d \mu \nu}+g_{a \wedge \mathrm{~B}} \partial_{\mu} a F^{\mu \nu}-\frac{e^{2} a}{4 \pi^{2} v_{a}} j_{m}^{\phi \nu}=\bar{j}_{e}^{\nu}, \\
& \partial_{\mu} F^{d \mu \nu}+g_{a \mathrm{BB}} \partial_{\mu} a F^{\mu \nu}-g_{a \wedge \mathrm{~B}} \partial_{\mu} a F^{d \mu \nu}=j_{m}^{\nu}, \\
& \left(\partial^{2}-m_{a}^{2}\right) a=-\frac{1}{4}\left(g_{a \wedge \Lambda}+g_{a \mathrm{BB}}\right) F_{\mu \nu} F^{d \mu \nu}-\frac{1}{2} g_{a \wedge \mathrm{~B}} F_{\mu \nu} F^{\mu \nu}
\end{aligned}
$$

In the experimentally relevant case, in terms of electric and magnetic fields:

$$
\begin{aligned}
& \boldsymbol{\nabla} \times \mathbf{B}_{a}-\dot{\mathbf{E}}_{a}=g_{a \mathrm{AA}}\left(\mathbf{E}_{0} \times \boldsymbol{\nabla} a-\dot{a} \mathbf{B}_{0}\right)+g_{a \mathrm{AB}}\left(\mathbf{B}_{0} \times \boldsymbol{\nabla} a+\dot{a} \mathbf{E}_{0}\right), \\
& \nabla \times \mathbf{E}_{a}+\dot{\mathbf{B}}_{a}=-g_{a \mathrm{aB}}\left(\mathbf{B}_{0} \times \nabla a+\dot{a} \mathbf{E}_{0}\right)-g_{a \mathrm{AB}}\left(\mathbf{E}_{0} \times \nabla a-\dot{a} \mathbf{B}_{0}\right), \\
& \nabla \cdot \mathbf{B}_{a}=-g_{a \mathrm{BB}} \mathbf{E}_{0} \cdot \boldsymbol{\nabla} a+g_{a \mathrm{AB}} \mathbf{B}_{0} \cdot \boldsymbol{\nabla} a, \\
& \nabla \cdot \mathbf{E}_{a}=g_{a \mathrm{AA}} \mathbf{B}_{0} \cdot \boldsymbol{\nabla} a-g_{a \mathrm{AB}} \mathbf{E}_{0} \cdot \boldsymbol{\nabla} a, \\
& \left(\partial^{2}-m_{a}^{2}\right) a=\left(g_{a \mathrm{AA}}+g_{a \mathrm{BB}}\right) \mathbf{E}_{0} \cdot \mathbf{B}_{0}+g_{a \mathrm{AB}}\left(\mathbf{E}_{0}^{2}-\mathbf{B}_{0}^{2}\right),
\end{aligned}
$$

where we separated external fields sustained in the detector and axion-induced fields.

$$
\begin{gathered}
\oint \operatorname{Re}(\mathbf{S}) \cdot \hat{n} d s=\frac{j \omega_{a} \epsilon_{0} c g_{a r y}}{4} \int\left(\mathbf{E}_{1} \cdot \tilde{a}^{*} \vec{B}_{0}-\mathbf{E}_{1}^{*} \cdot \tilde{a} \vec{B}_{0}\right) d \tau \\
\frac{j \omega_{0} g_{a \Delta B}}{+\frac{1}{4} \int\left(\mathbf{E}_{1} \cdot \mathbf{J}_{e 1}^{*}+\mathbf{E}_{1}^{*} \cdot \mathbf{J}_{e 1}\right) d \tau} \\
\int\left(\mathbf{B}_{1} \cdot \tilde{a}^{*} \vec{B}_{0}-\mathbf{B}_{1}^{*} \cdot \tilde{a} \vec{B}_{0}\right) d \tau=0
\end{gathered}
$$

in constant magnetic field, needs a gradient field to be non zero

Catriona Thomson

Frequency Technique Applying Perturbation Theorem
Power Technique Applying Poynting Theorem

$$
\begin{aligned}
& \oint \operatorname{Re}\left(\mathbf{S}_{1}\right) \cdot \hat{n} d s=\int\left(-\frac{1}{4}\left(\mathbf{E}_{1} \cdot \mathbf{J}_{e 1}^{*}-\mathbf{E}_{1}^{*} \cdot \mathbf{J}_{e 1}\right)\right. \\
& +\frac{j \omega_{a} \epsilon_{0} c g_{a B B} \sqrt{2}\left\langle a_{0}\right\rangle}{4}\left(\mathbf{B}_{1}^{*} \cdot \mathbf{E}_{0}-\mathbf{B}_{1} \cdot \mathbf{E}_{0}^{*}\right) \\
& \left.+\frac{j \omega_{a} \epsilon_{0} c g_{a r y} \sqrt{2}\left\langle a_{0}\right\rangle}{4}\left(\mathbf{E}_{1} \cdot \mathbf{B}_{0}^{*}-\mathbf{E}_{1}^{*} \cdot \mathbf{B}_{0}\right)\right) d V \\
& S N R p_{\text {ary }} \sim g_{a \gamma \gamma}\left|\xi_{10}\right| \sqrt{\frac{2 Q_{L 0} Q_{L 1} P_{0 \text { inc }} \rho_{a} c^{3}}{\omega_{1} \omega_{0} k_{B}\left(T_{1}+T_{a m p}\right)}}\left(\frac{10^{6} t}{f_{a}}\right)^{\frac{1}{4}}, \\
& \xi_{10}=\frac{1}{V} \int \mathbf{e}_{1} \cdot \mathbf{b}_{0} d V \quad \xi_{01}=\frac{1}{V} \int \mathbf{e}_{0} \cdot \mathbf{b}_{1} d V
\end{aligned}
$$

$$
\begin{aligned}
& S N R \omega_{a r y} \sim g_{a r y}\left|\xi_{10}\right| \sqrt{\frac{2 Q_{L 0} Q_{L 1} P_{\text {oinc }} \rho_{a} c^{3}}{\omega_{1} \omega_{0} k_{B} T_{R S}}}\left(\frac{10^{6} t}{f_{a}}\right)^{\frac{1}{4}},
\end{aligned}
$$

| arXiv:2208.01640 [pdf, other]

Twisted Anyon Cavity Resonators with Bulk Modes of Chiral Symmetry and Sensitivity to Ultra-Light Axion Dark Matter
J. F. Bourhill, E. C. I. Paterson, M. Goryachev, M. E. Tobar

PHYSICAL REVIEW LETTERS

Highlights
Recent
Accepted
Collections

Fermions Come in Two Chiralities, Called Left and Right. Bosons Do Not

$$
\mathscr{H}_{p}=\frac{2 \operatorname{Im}\left[\int \mathbf{B}_{p}(\vec{r}) \cdot \mathbf{E}_{p}^{*}(\vec{r}) d \tau\right]}{\sqrt{\int \mathbf{E}_{p}(\vec{r}) \cdot \mathbf{E}_{p}^{*}(\vec{r}) d \tau \int \mathbf{B}_{p}(\vec{r}) \cdot \mathbf{B}_{p}^{*}(\vec{r}) d \tau}}
$$

Resonator	Mode	$f(\mathrm{GHz})$	$G(\Omega)$	\mathscr{H}
Ring	ψ_{0}^{-}	17.221	6200	0.933
Ring	ψ_{1}^{-}	17.297	6570	0.9166
Ring	ψ_{0}^{+}	17.895	7290	-0.820
Linear	ψ_{0}^{-}	17.214	1950	0.932
Linear	ψ_{1}^{-}	17.278	2030	0.896
Linear	ψ_{0}^{+}	17.859	1920	-0.884

TABLE I. Simulated f, G and \mathscr{H} values for the lowest order $\psi^{ \pm}$modes for $l=150 \mathrm{~mm}, v=20 \mathrm{~mm}$ and $\theta=120^{\circ}$ ring and linear resonators.

Zilch (electromagnetism)

In physics, zilch is a conserved quantity of the electromagnetic field.
Daniel M. Lipkin observed that if he defined the quantities

$$
\begin{aligned}
Z^{0} & =\mathbf{E} \cdot \nabla \times \mathbf{E}+\mathbf{B} \cdot \nabla \times \mathbf{B} \\
\mathbf{Z} & =\frac{1}{c}\left(\mathbf{E} \times \frac{d}{d t} \mathbf{E}+\mathbf{B} \times \frac{d}{d t} \mathbf{B}\right)
\end{aligned}
$$

then the Maxwell equations imply that

$$
\partial_{0} Z^{0}+\nabla \cdot \mathbf{Z}=0
$$

which implies that the total "zilch" $\int Z^{0} d^{3} x$ is constant (\mathbf{Z} is the "zilch current").

On the natures of the spin and orbital parts of optical angular momentum

Stephen M Barnett ${ }^{1}$, L Allen ${ }^{2}$, Robert P Cameron ${ }^{1}$, Claire R Gilson ${ }^{3}$, Miles J Padgett ${ }^{1}$, Fiona C Speirits ${ }^{1}$ and Alison M Yao ${ }^{2}$
${ }^{1}$ School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
${ }^{2}$ Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
${ }^{3}$ School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QW, UK

Optical chirality: Twisted light

Circularly polarized light

Helicity of light plays an important part in the coupling between electromagnetic fields and chiral objects

Axion is a Chiral Object

$$
\mathscr{H}_{p}=\frac{2 \operatorname{Im}\left[\int \mathbf{B}_{p}(\vec{r}) \cdot \mathbf{E}_{p}^{*}(\vec{r}) d \tau\right]}{\sqrt{\int \mathbf{E}_{p}(\vec{r}) \cdot \mathbf{E}_{p}^{*}(\vec{r}) d \tau \int \mathbf{B}_{p}(\vec{r}) \cdot \mathbf{B}_{p}^{*}(\vec{r}) d \tau}}
$$

$\beta_{p}=\frac{R_{p}}{R_{e}} \quad$| $Z_{0}=R_{e}$ | C_{p} | ∞ | $P_{i n c}$ |
| :--- | :--- | :--- | :--- |

FIG. 7. Equivalent parallel LCR circuit model of a resonant mode with a coupling of β_{p}, when impedance matched $\beta_{p}=1$.

$$
P_{p}=\frac{\beta_{p} P_{d}}{\beta_{p}+1}=\frac{4 \beta_{p}^{2}}{\left(1+\beta_{p}\right)^{2}} P_{i n c} .
$$

$$
\frac{P_{a m}}{P_{i n c}}=\frac{m_{a m}^{2} P_{p}}{P_{i n c}}=Q_{p}^{2} \frac{4 \beta_{p}^{2}}{\left(1+\beta_{p}\right)^{2}}\left(\frac{\omega_{a}}{\omega_{p}}\right)^{2} \frac{\left\langle\theta_{0}\right\rangle^{2}}{8} \mathscr{H}_{p}^{2}
$$

$$
S N R=\frac{g_{a \gamma \gamma} \beta_{p}\left|\mathscr{H}_{p}\right|}{\sqrt{2}\left(1+\beta_{p}\right)} \frac{Q_{p}}{\sqrt{1+4 Q_{p}^{2}\left(\frac{\omega_{a}}{\omega_{p}}\right)^{2}}} \frac{\left(\frac{10^{6} t}{\omega_{a}}\right)^{\frac{1}{4}} \sqrt{\rho_{a} c^{3}}}{\omega_{p} \sqrt{S_{a m}}}
$$

$$
S N R p_{a r y} \sim g_{a r y}\left|\xi_{10}\right| \sqrt{\frac{2 Q_{L 0} Q_{L 1} P_{0 i n} \rho_{a} c^{3}}{\omega_{1} \omega_{0} k_{B}\left(T_{1}+T_{a m p}\right.}}\left(\frac{10^{6} t}{f_{a}}\right)^{\frac{1}{4}},
$$

Sensitivity $\sim|\mathscr{H}|\left(g_{a \gamma y}+g_{a B B}\right)$

High Energy Physics - Phenomenology

Submitted on 21 Dec 20211

Detecting High-Frequency Gravitational Waves with Microwave Cavities

Asher Berlin, Diego Blas, Raffaele Tito D'Agnolo, Sebastian A. R. Ellis, Roni Harnik, Yonatan Kahn, Jan Schütte-Engel
We give a detailed treatment of electromagnetic signals generated by gravitational waves (CWs) in resonant cavity experiments. Our investigation corrects and builds upon previous studies by carefully accounting for the gauge dependence of relevant quantities. We work in a preferred frame for the laboratory, the proper detector frame, and show how to resum short wavelength effects to provide analytic results that are exact for GWs of arbitrary wavelength. This formalism allows us to firmly establish that, contrary to previous claims, cavity experiments designed for the detection of axion dark matter only need to reanalyze existing data to search for high-frequency GWs with strains as small as $h \sim 10^{-22}-10^{-21}$. We also argue that directional detection is possible in principle using readout of multiple cavity modes. Further improvements in sensitivity are expected with cutting-edge advances in superconducting cavity technology.

. 20 pages + appendix, 7 figures

Subjects: High Energy Physics - Phenomenology (hep-ph); High Energy Astrophysical Phenomena (astro-ph.HE); Instrumentation and Methods for Astrophysics (astro-ph.IM); High Energy Physics - Experiment (hep-ex) Cite as: arxiv:2112.11465 [hep-ph]
(or arxiv:2112.11465v1 [hep-ph] for this version)

Submission history

From: Jan Schütte-Engel [view email]
[v1] Tue, 21 Dec 2021 19:00:01 UTC ($3,548 \mathrm{~KB}$)

II. GW ELECTRODYNAMICS IN THE PROPER DETECTOR FRAME

A. Analogies with Axion Dark Matter Detection

FIG. 1. A cartoon illustrating the differences between GW-EM conversion (left) and axion-EM conversion (right) in the presence of an external magnetic field \mathbf{B}_{0}. The GW effective current is proportional to $\omega_{g} h B_{0}$, with a direction dependent on the GW polarization and a typical quadrupole pattern, yielding a signal field with amplitude $h B_{0}$. The axion effective current is proportional to $\omega_{a} \theta_{a} B_{0}$, with a direction parallel to the external field \mathbf{B}_{0}, yielding a signal field with amplitude $\theta_{a} B_{0}$. The differing geometry of the effective current yields different selection rules for coupling the GW and axion to cavity modes.

FIG. 4. Projected sensitivity of axion experiments to high-frequency GWs, assuming an integration time of $l_{\text {int }}=2$ min for ADMX, HAYSTAC and CAPP, $t_{\text {int }}=4$ day for ORGAN, and $t_{\text {int }}=1$ day for the SQMS parameters. These integration times are characteristic of data-taking runs in each experiment. The GW-cavity coupling coefficient is fixed to $\eta_{n}=0.1$ for each experiment, and the signal bandwidth $\Delta \nu$ is conservatively fixed to the linewidth of the cavity. Dark (light) blue regions indicate the sensitivity at the lowest (highest) resonant frequency of the tunable signal mode. For ADMX [46, 120, 122], HAYSTAC [47], and CAPP [123], the signal mode is TM ${ }_{010}$, but. for ORGAN [48] the signal mode is TM_{020}. The system temperature $T_{\text {sys }}$ defining the thermal noise floor of cach experiment is given in the figure, along with relevant experimental parametcrs including the loaded cavity quality factor Q.

$$
\begin{gathered}
j_{\text {eff }} \supset g_{a r y} \partial_{l} \mathbf{B}_{0} \simeq \omega_{a} \theta_{a} \mathbf{B}_{0} \quad \mathbf{E}_{a}=g_{a r \gamma} a \mathbf{B}_{0}=\theta_{a} \mathbf{B}_{0} \\
j_{\text {cff }}^{\mu} \equiv \partial_{\nu}\left(\frac{1}{2} h F^{\mu \nu}+h_{\alpha}^{\nu} F^{\alpha \mu}-h_{\alpha}^{\mu} F^{\infty \nu}\right) \\
j_{\text {eff }} \sim \omega_{g} h B_{0}
\end{gathered}
$$

identifying $\theta_{a} \sim h$

Comparing the Sensitivity of Dissimilar Photonic Axion Haloscopes to Axion Dark

 Matter and High Frequency Gravitational Waves

LIGO Strain SD

ADMX and ORGAN (purple) with current tuning locus (blue); 0.6-1.2 GHz for ADMX and 15.2 to 16.2 GHz for ORGAN DARK (M)

Photon Haloscopes

- Axions convert into photons in presence of a background AC electromagnetic field

Axion Equation of Motion:
Klein-Gordon equation for massive spin 0
particle
Modified Axion Electrodynamics
(Represents two photons)

$$
\begin{aligned}
& \nabla \cdot \vec{E}=\frac{\rho_{e}}{\varepsilon_{0}}+c g_{a \gamma \gamma} \vec{B} \cdot \nabla a \\
& \nabla \times \vec{B}-\frac{1}{c^{2}} \partial_{t} \vec{E}= \\
& \mu_{0} \overrightarrow{J_{e}}-g_{a \gamma \gamma} \epsilon_{0} c\left(\vec{B} \partial_{t} a+\nabla a \times \vec{E}\right) \\
& \nabla \cdot \vec{B}=0 \\
& \nabla \times \vec{E}+\partial_{t} \vec{B}=0
\end{aligned}
$$

Photon Haloscopes

- Axions convert into photons in presence of a background AC electromagnetic field

Axion Equation of Motion:

$$
\begin{aligned}
& \text { Klein-Gordon equation } \\
& \text { for massive spin } 0 \\
& \text { particle } \\
& \begin{array}{c}
a(t)=\frac{1}{2}\left(\tilde{a} e^{-j \omega_{a} t}+\tilde{a}^{*} e^{j \omega_{a} t}\right) \\
=\operatorname{Re}\left(\tilde{a} e^{-j \omega_{a} t}\right)
\end{array}
\end{aligned}
$$

(Represents two photons)

Modified Axion Electrodynamics

$$
\begin{aligned}
& \nabla \cdot \vec{E}=\frac{\rho_{e}}{\varepsilon_{0}}+c g_{a \gamma \gamma} \vec{B} \cdot \nabla a \\
& \nabla \times \vec{B}-\frac{1}{c^{2}} \partial_{t} \vec{E}= \\
& \mu_{0} \overrightarrow{J_{e}}-g_{a \gamma \gamma} \epsilon_{0} c\left(\vec{B} \partial_{t} a+\nabla a \times \vec{E}\right) \\
& \nabla \cdot \vec{B}=0 \\
& \nabla \times \vec{E}+\partial_{t} \vec{B}=0
\end{aligned}
$$

2) Created Photon Field
(subscript 1)

Background field

 (subscript zero)Photon Haloscopes
Axions convert into photons in presence of a background AC electromagnetic field

Axion Equation of Motion:

$$
\begin{aligned}
& \text { Klein-Gordon equation } \\
& \text { for massive spin } 0 \\
& \text { particle } \\
& \begin{array}{c}
a(t)=\frac{1}{2}\left(\tilde{a} e^{-j \omega_{a} t}+\tilde{a}^{*} e^{j \omega_{a} t}\right) \\
=\operatorname{Re}\left(\tilde{a} e^{-j \omega_{a} t}\right)
\end{array}
\end{aligned}
$$

1)
2) Created Photon Field
(subscript 1)
Modified Axion Electrodynamics

$$
\begin{aligned}
& \text { (Represents two photons) } \\
& \nabla \cdot \vec{E}=\frac{\rho_{e}}{\varepsilon_{0}}+c g_{a \gamma \gamma} \vec{B} \cdot \nabla a \\
& \nabla \times \vec{B}-\frac{1}{c^{2}} \partial_{t} \vec{E}= \\
& \mu_{0} \overrightarrow{J_{e}}-g_{a \gamma \gamma} \epsilon_{0} c\left(\vec{B} \partial_{t} a+\nabla a \times \vec{E}\right) \\
& \nabla \cdot \vec{B}=0 \\
& \nabla \times \vec{E}+\partial_{t} \vec{B}=0
\end{aligned}
$$

$$
\nabla \cdot \vec{E}=\frac{\rho_{e}}{\varepsilon_{0}}+c g_{a r \gamma} \vec{B} \cdot \nabla a \longrightarrow \frac{1}{\mu_{0}} \nabla \times \vec{B}_{1}-\epsilon_{0} \partial_{t} \vec{E}_{1}=\vec{J}_{e 1}+\vec{J}_{a b}+\vec{J}_{a e}
$$

Photon Haloscopes

- Axions convert into photons in presence of a background AC electromagnetic field

Axion Equation of Motion:

$$
\begin{aligned}
& \text { Klein-Gordon equation } \\
& \text { for massive spin } 0 \\
& \text { particle } \\
& \begin{array}{c}
a(t)=\frac{1}{2}\left(\tilde{a} e^{-j \omega_{a} t}+\tilde{a}^{*} e^{j \omega_{a} t}\right) \\
=\operatorname{Re}\left(\tilde{a} e^{-j \omega_{a} t}\right)
\end{array}
\end{aligned}
$$

1)

) Background field (subscript zero)
2) Created Photon Field
(subscript 1)
Modified Axion Electrodynamics

$$
\begin{aligned}
& \text { (Represents two photons) } \\
& \rightarrow \quad \rho_{e} \quad \rightarrow \quad \frac{1}{\mu_{0}} \nabla \times \vec{B}_{1}-\epsilon_{0} \partial_{t} \vec{E}_{1}=\vec{J}_{e 1}+\vec{J}_{a b}+\vec{J}_{a e} \\
& \nabla \cdot \vec{E}=\frac{\rho_{e}}{\varepsilon_{0}}+c g_{a r \gamma} \vec{B} \cdot \nabla a \longrightarrow \rho_{a b}=g_{a r \gamma} \epsilon_{0} c \nabla \cdot\left(a(t) \vec{B}_{0}(\vec{r}, t)\right) \\
& \nabla \times \vec{B}-\frac{1}{c^{2}} \partial_{t} \vec{E}= \\
& \mu_{0} \vec{J}_{e}-g_{a \gamma \gamma} \epsilon_{0} c\left(\vec{B} \partial_{t} a+\nabla a \times \vec{E}\right) \\
& \nabla \cdot \vec{B}=0 \\
& \nabla \times \vec{E}+\partial_{t} \vec{B}=0 \\
& \epsilon_{0} \nabla \cdot \vec{E}_{1}=\rho_{e 1}+\rho_{a b} \\
& \begin{array}{c}
\frac{1}{\mu_{0}} \nabla \times \vec{B}_{1}-\epsilon_{0} \partial_{t} \vec{E}_{1}=\vec{J}_{e 1}+\vec{J}_{a b} \\
\rho_{a b}=g_{a y \gamma} \epsilon_{0} c \nabla \cdot\left(a(t) \vec{B}_{0}(\vec{r}, t)\right)
\end{array} \\
& \vec{J}_{a b}=-g_{a r \gamma} \epsilon_{0} c \partial_{t}\left(a(t) \vec{B}_{0}(\vec{r}, t)\right) \\
& \vec{J}_{a e}=-g_{a r \gamma} \epsilon_{0} c \nabla \times\left(a(t) \vec{E}_{0}(\vec{r}, t)\right) \\
& \nabla \cdot \vec{J}_{a b}=-\partial_{t} \rho_{a b}
\end{aligned}
$$

Photon Haloscopes

- Axions convert into photons in presence of a background AC electromagnetic field

Axion Equation of Motion:

Modified Axion Electrodynamics

$$
\begin{aligned}
& a(t)=\frac{1}{2}\left(\tilde{a} e^{-j \omega_{a} t}+\tilde{a}^{*} e^{j \omega_{a} t}\right) \\
& =\operatorname{Re}\left(\tilde{a} e^{-j \omega_{a} t}\right) \\
& \text { Klein-Gordon equation } \\
& \text { for massive spin } 0 \\
& \text { particle }
\end{aligned}
$$

2) Created Photon Field (subscript 1)

$$
\begin{array}{ll}
\text { (Represents two photons) } & \begin{array}{c}
\epsilon_{0} \nabla \cdot \vec{E}_{1}=\rho_{e 1}+\rho_{a b} \\
\nabla \cdot \vec{E}=\frac{\rho_{e}}{\varepsilon_{0}}+c g_{a r \gamma} \vec{B} \cdot \nabla a \\
\nabla \times \vec{B}-\frac{1}{c^{2}} \partial_{t} \vec{E}= \\
\frac{1}{\mu_{0}} \nabla \times \vec{B}_{1}-\epsilon_{0} \partial_{t} \vec{E}_{1}=\vec{J}_{e 1}+\vec{J}_{a b}+\vec{J}_{a e} \\
\mu_{0} \overrightarrow{J_{e}}-g_{a \gamma \gamma} \epsilon_{0} c\left(\vec{B} \partial_{t} a+\nabla a \times \vec{E}\right) \\
\nabla \cdot \vec{B}=0
\end{array} \\
\nabla \times \vec{E}+\partial_{t} \vec{B}=0 & \vec{J}_{a b}=-g_{a r y} \epsilon_{0} c \nabla \cdot\left(a(t) \vec{B}_{0}(\vec{r}, t)\right) \\
\vec{J}_{a e}=-g_{a r \gamma} \epsilon_{0} c \partial_{t}\left(a(t) \vec{B}_{0}(\vec{r}, t)\right) \\
\nabla\left(a(t) \vec{E}_{0}(\vec{r}, t)\right)
\end{array}
$$

Background field (subscript zero)

Photon Haloscopes

- Axions convert into photons in presence of a background AC electromagnetic field

Axion Equation of Motion:

$$
\begin{aligned}
& \text { Klein-Gordon equation } \\
& \text { for massive spin } 0 \\
& \text { particle } \\
& \begin{array}{c}
a(t)=\frac{1}{2}\left(\tilde{a} e^{-j \omega_{a} t}+\tilde{a}^{*} e^{j \omega_{a} t}\right) \\
=\operatorname{Re}\left(\tilde{a} e^{-j \omega_{a} t}\right)
\end{array}
\end{aligned}
$$

Modified Axion Electrodynamics

$$
\begin{aligned}
& \text { (Represents two photons) } \\
& \epsilon_{0} \nabla \cdot \vec{E}_{1}=\rho_{e 1}+\rho_{a b} \\
& \frac{1}{\mu_{0}} \nabla \times \vec{B}_{1}-\epsilon_{0} \partial_{t} \vec{E}_{1}=\vec{J}_{e 1}+\vec{J}_{a b}+\vec{J}_{a e} \\
& \nabla \cdot \vec{E}=\frac{\rho_{e}}{\varepsilon_{0}}+c g_{a \gamma \gamma} \vec{B} \cdot \nabla a \quad \rho_{a b}=g_{a \gamma \gamma} \epsilon_{0} c \nabla \cdot\left(a(t) \vec{B}_{0}(\vec{r}, t)\right) \\
& \nabla \times \vec{B}-\frac{1}{c^{2}} \partial_{t} \vec{E}= \\
& \mu_{0} \vec{J}_{e}-g_{a \gamma \gamma} \epsilon_{0} c\left(\vec{B} \partial_{t} a+\nabla a \times \vec{E}\right) \\
& \nabla \cdot \vec{B}=0 \\
& \nabla \times \vec{E}+\partial_{t} \vec{B}=0 \\
& \vec{J}_{a b}=-g_{a \gamma \gamma} \epsilon_{0} c \partial_{t}\left(a(t) \vec{B}_{0}(\vec{r}, t)\right) \\
& \vec{J}_{a e}=-g_{a \gamma \gamma} \epsilon_{0} c \nabla \times\left(a(t) \vec{E}_{0}(\vec{r}, t)\right) \\
& \nabla \cdot \vec{J}_{a b}=-\partial_{t} \rho_{a b}
\end{aligned}
$$

Modified Axion

 Electrodynamics(Represents two photons)
$\nabla \cdot \vec{E}=\frac{\rho_{e}}{\varepsilon_{0}}+c g_{a \gamma \gamma} \vec{B} \cdot \nabla a$

Applied Background Field

$\nabla \times \vec{B}-\frac{1}{c^{2}} \partial_{t} \vec{E}=$
$\mu_{0} \vec{J}_{e}-g_{a \gamma \gamma} \epsilon_{0} c\left(\vec{B} \partial_{t} a+\nabla a \times \vec{E}\right)$
$\nabla \cdot \vec{B}=0$
$\nabla \times \vec{E}+\partial_{t} \vec{B}=0$

Modified Axion

 Electrodynamics(Represents two photons)
$\nabla \cdot \vec{E}=\frac{\rho_{e}}{\varepsilon_{0}}+c g_{a r y} \vec{B} \cdot \nabla a$

Applied Background Field

$\nabla \times \vec{B}-\frac{1}{c^{2}} \partial_{t} \vec{E}=$
$\mu_{0} \vec{J}_{e}-g_{a \gamma \gamma} \epsilon_{0} c\left(\vec{B}_{t} a+\nabla a \times \vec{E}\right)$
$\nabla \cdot \vec{B}=0$
$\nabla \times \vec{E}+\partial_{t} \vec{B}=0$

$$
\begin{aligned}
& \nabla \times \vec{B}_{0}=\mu_{0} \epsilon_{0} \partial_{t} \vec{E}_{0}+\mu_{0} \vec{J}_{e_{0}} \\
& \nabla \times \vec{E}_{0}=-\partial_{t} \vec{B}_{0} \\
& \nabla \cdot \vec{B}_{0}=0 \\
& \nabla \cdot \vec{E}_{0}=\epsilon_{0}^{-1} \rho_{e_{0}}
\end{aligned}
$$

Modified Axion

 Electrodynamics(Represents two photons)

Applied Background Field

$$
\nabla \cdot \vec{E}=\frac{\rho_{e}}{\varepsilon_{0}}+c g_{a r y} \vec{B} \cdot \nabla a \quad \nabla \cdot \vec{B}_{0}=0 .
$$

$$
\begin{aligned}
& \nabla \times \vec{B}_{0}=\mu_{0} \epsilon_{0} \partial_{t} \vec{E}_{0}+\mu_{0} \vec{J}_{e_{0}} \\
& \nabla \times \vec{E}_{0}=-\partial_{t} \vec{B}_{0} \\
& \nabla \cdot \vec{B}_{0}=0 \\
& \nabla \cdot \vec{E}_{0}=\epsilon_{0}^{-1} \rho_{e_{0}}
\end{aligned}
$$

$$
\nabla \times \vec{B}-\frac{1}{c^{2}} \partial_{t} \vec{E}=
$$

$$
\mu_{0} \vec{J}_{e}-g_{a r \gamma} \epsilon_{0} c\left(\vec{B} \partial_{t} a+\nabla a \times \vec{E}\right)
$$

$$
\nabla \cdot \vec{B}=0
$$

$$
\nabla \times \vec{E}+\partial_{t} \vec{B}=0
$$

Modified Axion

 Electrodynamics
Applied Background Field

(Represents two photons)

$$
\begin{aligned}
& \nabla \times \vec{B}_{0}=\mu_{0} \epsilon_{0} \partial_{t} \vec{E}_{0}+\mu_{0} \vec{J}_{e_{0}} \\
& \nabla \times \vec{E}_{0}=-\partial_{t} \vec{B}_{0} \\
& \nabla \cdot \vec{B}_{0}=0 \\
& \nabla \cdot \vec{E}_{0}=\epsilon_{0}^{-1} \rho_{e_{0}}
\end{aligned}
$$

$\nabla \times \vec{B}-\frac{1}{c^{2}} \partial_{t} \vec{E}=$
$\mu_{0} \vec{J}_{e}-g_{a r \gamma} \epsilon_{0} c\left(\vec{B} \partial_{t} a+\nabla a \times \vec{E}\right)$
$\nabla \cdot \vec{B}=0$
$\nabla \times \vec{E}+\partial_{t} \vec{B}=0$

Measure Created Photon

$$
\nabla \cdot \vec{E}=\frac{\rho_{e}}{\varepsilon_{0}}+c g_{a r y} \vec{B} \cdot \nabla a \quad \begin{array}{ll}
\nabla \cdot \vec{B}_{0}=0 \\
\nabla \cdot \vec{E}_{0}=\epsilon_{0}^{-1} \rho_{e_{0}}
\end{array}
$$

$$
\begin{aligned}
& \nabla \cdot\left(\vec{E}_{1}(\vec{r}, t)-g_{a r y} a(t) c \vec{B}_{0}(\vec{r}, t)\right)=\frac{\rho_{e_{1}}}{\epsilon_{0}} \\
& \nabla \times\left(\vec{B}_{1}(\vec{r}, t)+\frac{g_{a r y} a(t)}{c} \vec{E}_{0}(\vec{r}, t)\right) \\
& -\frac{1}{c^{2}} \partial_{t}\left(\vec{E}_{1}(\vec{r}, t)-g_{a r y} a(\vec{r}, t) c \vec{B}_{0}(\vec{r}, t)\right)=\mu_{0} \vec{J}_{e_{1}} \\
& \nabla \cdot \vec{B}_{1}(\vec{r}, t)=0 \\
& \nabla \times \vec{E}_{1}(\vec{r}, t)+\partial_{t} \vec{B}_{1}(\vec{r}, t)=0 .
\end{aligned}
$$

Modified Axion

 Electrodynamics$$
\begin{aligned}
& \text { (Represents two } \\
& \text { photons) } \\
& \nabla \cdot \vec{E}=\frac{\rho_{e}}{\varepsilon_{0}}+c g_{a r \gamma} \vec{B} \cdot \nabla a \\
& \nabla \times \vec{B}-\frac{1}{c^{2}} \partial_{t} \vec{E}= \\
& \mu_{0} \vec{J}_{e}-g_{a r y} \epsilon_{0} c\left(\vec{B} \partial_{t} a+\nabla a \times \vec{E}\right) \\
& \nabla \times \vec{B}_{0}=\mu_{0} \epsilon_{0} \partial_{t} \vec{E}_{0}+\mu_{0} \vec{J}_{e_{0}} \\
& \nabla \times \vec{E}_{0}=-\partial_{t} \vec{B}_{0} \\
& \nabla \cdot \vec{B}_{0}=0 \\
& \nabla \cdot \vec{E}_{0}=\epsilon_{0}^{-1} \rho_{e_{0}} \\
& \nabla \cdot \vec{B}=0 \\
& \nabla \times \vec{E}+\partial_{t} \vec{B}=0 \\
& \nabla \cdot\left(\vec{E}_{1}(\vec{r}, t)-g_{\text {ary }} a(t) c \vec{B}_{0}(\vec{r}, t)\right)=\frac{\rho_{e_{1}}}{\epsilon_{0}} \\
& \nabla \times\left(\vec{B}_{1}(\vec{r}, t)+\frac{g_{\text {ary }} a(t)}{c} \vec{E}_{0}(\vec{r}, t)\right) \\
& -\frac{1}{c^{2}} \partial_{t}\left(\vec{E}_{1}(\vec{r}, t)-g_{a r y} a(\vec{r}, t) c \vec{B}_{0}(\vec{r}, t)\right)=\mu_{0} \vec{J}_{e_{1}} \\
& \nabla \cdot \vec{B}_{1}(\vec{r}, t)=0 \\
& \nabla \times \vec{E}_{1}(\vec{r}, t)+\partial_{t} \vec{B}_{1}(\vec{r}, t)=0 .
\end{aligned}
$$

Applied Background Field

Modified Axion Electrodynamics

Applied Background Field

$$
\vec{\nabla} \cdot \vec{B}_{1}=0
$$ photons)

$$
\vec{\nabla} \cdot \vec{D}_{1}=\rho_{e 1}
$$

$$
\vec{\nabla} \times \vec{E}_{1}=-\partial_{t} \vec{B}_{1}
$$

(Represents two

$$
\nabla \times \vec{B}_{0}=\mu_{0} \epsilon_{0} \partial_{t} \vec{E}_{0}+\mu_{0} \vec{J}_{e_{0}}
$$

$\nabla \cdot \vec{E}=\frac{\rho_{e}}{\varepsilon_{0}}+c g_{a r \gamma} \vec{B} \cdot \nabla a$

$$
\nabla \times \vec{E}_{0}=-\partial_{t} \vec{B}_{0}
$$

$$
\nabla \cdot \vec{B}_{0}=0
$$

$$
\nabla \cdot \vec{E}_{0}=\epsilon_{0}^{-1} \rho_{e_{0}}
$$

$$
\nabla \times \vec{B}-\frac{1}{c^{2}} \partial_{t} \vec{E}=
$$

$\nabla \times \vec{B}-\frac{1}{c^{2}} \partial_{t} \vec{E}=$
$\mu_{0} \vec{J}_{e}-g_{a r y} \epsilon_{0} c\left(\vec{B} \partial_{t} a+\nabla a \times \vec{E}\right)$

$$
\mu_{0} \vec{J}_{e}-g_{a r y} \epsilon_{0} c\left(\vec{B} \partial_{t} a+\nabla a \times \vec{E}\right)
$$

Measure Created Photon

$\nabla \cdot \vec{B}=0$
$\nabla \times \vec{E}+\partial_{t} \vec{B}=0$

$$
\begin{aligned}
& \nabla \cdot\left(\vec{E}_{1}(\vec{r}, t)-g_{a r y} a(t) c \vec{B}_{0}(\vec{r}, t)\right)=\frac{\rho_{e_{1}}}{\epsilon_{0}} \\
& \nabla \times\left(\vec{B}_{1}(\vec{r}, t)+\frac{g_{a r y} a(t)}{c} \vec{E}_{0}(\vec{r}, t)\right) \\
& -\frac{1}{c^{2}} \partial_{t}\left(\vec{E}_{1}(\vec{r}, t)-g_{a r y} a\left(\vec{r}_{r}, t\right) c \vec{B}_{0}(\vec{r}, t)\right)=\mu_{0} \vec{J}_{e_{1}} \\
& \nabla \cdot \vec{B}_{1}(\vec{r}, t)=0 \\
& \nabla \times \vec{E}_{1}(\vec{r}, t)+\partial_{t} \vec{B}_{1}(\vec{r}, t)=0 .
\end{aligned}
$$

Modified Axion

 Electrodynamics
(Represents two

 photons)$$
\begin{gathered}
\text { photons) } \\
\nabla \cdot \vec{E}=\frac{\rho_{e}}{\varepsilon_{0}}+c g_{a r y} \vec{B} \cdot \nabla a
\end{gathered}
$$

Applied Background Field

$$
\vec{\nabla} \cdot \vec{D}_{1}=\rho_{e 1}
$$

$$
\vec{\nabla} \times \vec{E}_{1}=-\partial_{t} \vec{B}_{1}
$$

$$
\nabla \times \vec{B}_{0}=\mu_{0} \epsilon_{0} \partial_{t} \vec{E}_{0}+\mu_{0} \vec{J}_{e_{0}}
$$

$$
\vec{\nabla} \cdot \vec{B}_{1}=0
$$

$$
\nabla \times \vec{B}-\frac{1}{c^{2}} \partial_{t} \vec{E}=
$$

$$
\begin{aligned}
& \nabla \times \vec{E}_{0}=-\partial_{t} \vec{B}_{0} \\
& \nabla \cdot \vec{B}_{0}=0 \\
& \nabla \cdot \vec{E}_{0}=\epsilon_{0}^{-1} \rho_{e_{0}}
\end{aligned}
$$

$$
\mu_{0} \vec{J}_{e}-g_{a \gamma \gamma} \epsilon_{0} c\left(\vec{B} \partial_{t} a+\nabla a \times \vec{E}\right)
$$

$$
\nabla \cdot \vec{B}=0
$$

Measure Created Photon

$$
\nabla \times \vec{E}+\partial_{t} \vec{B}=0
$$

$$
\begin{aligned}
& \nabla \cdot\left(\vec{E}_{1}(\vec{r}, t)-g_{\text {ary }} a(t) c \vec{B}_{0}(\vec{r}, t)\right)=\frac{\rho_{e_{1}}}{\epsilon_{0}} \\
& \nabla \times\left(\vec{B}_{1}(\vec{r}, t)+\frac{g_{a r y} a(t)}{c} \vec{E}_{0}(\vec{r}, t)\right) \\
& -\frac{1}{c^{2}} \partial_{t}\left(\vec{E}_{1}(\vec{r}, t)-g_{\text {ary }} a(\vec{r}, t) c \vec{B}_{0}(\vec{r}, t)\right)=\mu_{0} \vec{J}_{e_{1}} \\
& \nabla \cdot \vec{B}_{1}(\vec{r}, t)=0 \\
& \nabla \times \vec{E}_{1}(\vec{r}, t)+\partial_{t} \vec{B}_{1}(\vec{r}, t)=0 .
\end{aligned}
$$

Modified Axion

 Electrodynamics$$
\vec{\nabla} \times \vec{E}_{1}=-\partial_{t} \vec{B}_{1}
$$

(Represents two

 photons)$$
\begin{gathered}
\text { photons) } \\
\nabla \cdot \vec{E}=\frac{\rho_{e}}{\varepsilon_{0}}+c g_{a r y} \vec{B} \cdot \nabla a
\end{gathered}
$$

Applied Background Field

$$
\vec{\nabla} \cdot \vec{D}_{1}=\rho_{e 1}
$$

Constitutive Relations(in vacuum)

$$
\frac{1}{\epsilon_{0}} \vec{D}_{1}=\vec{E}_{1}-g_{a y \gamma} c a \vec{B}_{0}
$$

$$
\nabla \times \vec{B}_{0}=\mu_{0} \epsilon_{0} \partial_{t} \vec{E}_{0}+\mu_{0} \vec{J}_{e_{0}}
$$

$\nabla \times \vec{B}-\frac{1}{c^{2}} \partial_{t} \vec{E}=$
$\mu_{0} \overrightarrow{J_{e}}-g_{a \gamma \gamma} \epsilon_{0} c\left(\vec{B} \partial_{t} a+\nabla a \times \vec{E}\right)$

Measure Created Photon

$\nabla \cdot \vec{B}=0$
$\nabla \times \vec{E}+\partial_{t} \vec{B}=0$

$$
\begin{aligned}
& \nabla \cdot\left(\vec{E}_{1}(\vec{r}, t)-g_{a \gamma \gamma} a(t) c \vec{B}_{0}(\vec{r}, t)\right)=\frac{\rho_{e_{1}}}{\epsilon_{0}} \\
& \nabla \times\left(\vec{B}_{1}(\vec{r}, t)+\frac{g_{a \gamma \gamma} a(t)}{c} \vec{E}_{0}(\vec{r}, t)\right) \\
& -\frac{1}{c^{2}} \partial_{t}\left(\vec{E}_{1}(\vec{r}, t)-g_{a \gamma \gamma} a(\vec{r}, t) c \overrightarrow{B_{0}}(\vec{r}, t)\right)=\mu_{0} \vec{J}_{e_{1}} \\
& \nabla \cdot \vec{B}_{1}(\vec{r}, t)=0 \\
& \nabla \times \vec{E}_{1}(\vec{r}, t)+\partial_{t} \vec{B}_{1}(\vec{r}, t)=0
\end{aligned}
$$

Modified Axion

 Electrodynamics
(Represents two

 photons)$$
\nabla \cdot \vec{E}=\frac{\rho_{e}}{\varepsilon_{0}}+c g_{a \gamma \gamma} \vec{B} \cdot \nabla a
$$

Applied Background Field

$$
\vec{\nabla} \cdot \vec{D}_{1}=\rho_{e 1}
$$

Constitutive Relations(in vacuum)

$$
\vec{\nabla} \times \vec{E}_{1}=-\partial_{t} \vec{B}_{1}
$$

$$
\frac{1}{\epsilon_{0}} \vec{D}_{1}=\vec{E}_{1}-g_{a \gamma \gamma} c a \vec{B}_{0}
$$

$$
\nabla \times \vec{B}_{0}=\mu_{0} \epsilon_{0} \partial_{t} \vec{E}_{0}+\mu_{0} \vec{J}_{e_{0}}
$$

$$
\vec{\nabla} \cdot \vec{B}_{1}=0
$$

$$
\begin{aligned}
& \nabla \times \vec{E}_{0}=-\partial_{t} \vec{B}_{0} \\
& \nabla \cdot \vec{B}_{0}=0 \\
& \nabla \cdot \vec{E}_{0}=\epsilon_{0}^{-1} \rho_{e_{0}}
\end{aligned}
$$

$$
\nabla \times \vec{B}-\frac{1}{c^{2}} \partial_{t} \vec{E}=
$$

$$
\mu_{0} \overrightarrow{J_{e}}-g_{a \gamma \gamma} \epsilon_{0} c\left(\vec{B} \partial_{t} a+\nabla a \times \vec{E}\right)
$$

Measure Created Photon

$\nabla \cdot \vec{B}=0$
$\nabla \times \vec{E}+\partial_{t} \vec{B}=0$

$$
\begin{aligned}
& \nabla \cdot\left(\vec{E}_{1}(\vec{r}, t)-g_{a \gamma \gamma} a(t) c \vec{B}_{0}(\vec{r}, t)\right)=\frac{\rho_{e_{1}}}{\epsilon_{0}} \\
& \nabla \times\left(\vec{B}_{1}(\vec{r}, t)+\frac{g_{a \gamma \gamma} a(t)}{c} \vec{E}_{0}(\vec{r}, t)\right) \\
& -\frac{1}{c^{2}} \partial_{t}\left(\vec{E}_{1}(\vec{r}, t)-g_{a \gamma \gamma} a(\vec{r}, t) c \overrightarrow{B_{0}}(\vec{r}, t)\right)=\mu_{0} \vec{J}_{e_{1}} \\
& \nabla \cdot \vec{B}_{1}(\vec{r}, t)=0 \\
& \nabla \times \vec{E}_{1}(\vec{r}, t)+\partial_{t} \vec{B}_{1}(\vec{r}, t)=0
\end{aligned}
$$

Modified Axion

 Electrodynamics
(Represents two

 photons)$$
\nabla \cdot \vec{E}=\frac{\rho_{e}}{\varepsilon_{0}}+c g_{a \gamma \gamma} \vec{B} \cdot \nabla a
$$

Applied Background Field

$$
\vec{\nabla} \cdot \vec{D}_{1}=\rho_{e 1}
$$

Constitutive Relations(in vacuum)

$$
\vec{\nabla} \times \vec{E}_{1}=-\partial_{t} \vec{B}_{1}
$$

$$
\frac{1}{\epsilon_{0}} \vec{D}_{1}=\vec{E}_{1}-g_{a \gamma \gamma} c a \vec{B}_{0}
$$

$$
\nabla \times \vec{B}_{0}=\mu_{0} \epsilon_{0} \partial_{t} \vec{E}_{0}+\mu_{0} \vec{J}_{e_{0}}
$$

$$
\begin{aligned}
& \nabla \times \vec{E}_{0}=-\partial_{t} \vec{B}_{0} \\
& \nabla \cdot \vec{B}_{0}=0 \\
& \nabla \cdot \vec{E}_{0}=\epsilon_{0}^{-1} \rho_{e_{0}}
\end{aligned}
$$

$$
\nabla \times \vec{B}-\frac{1}{c^{2}} \partial_{t} \vec{E}=
$$

$$
\mu_{0} \overrightarrow{J_{e}}-g_{a \gamma \gamma} \epsilon_{0} c\left(\vec{B} \partial_{t} a+\nabla a \times \vec{E}\right)
$$

Measure Created Photon

$\nabla \cdot \vec{B}=0$
$\nabla \times \vec{E}+\partial_{t} \vec{B}=0$

$$
\begin{aligned}
& \nabla \cdot\left(\vec{E}_{1}(\vec{r}, t)-g_{a \gamma \gamma} a(t) c \vec{B}_{0}(\vec{r}, t)\right)=\frac{\rho_{e_{1}}}{\epsilon_{0}} \\
& \nabla \times\left(\vec{B}_{1}(\vec{r}, t)+\frac{g_{a \gamma \gamma} a(t)}{c} \vec{E}_{0}(\vec{r}, t)\right) \\
& -\frac{1}{c^{2}} \partial_{t}\left(\vec{E}_{1}(\vec{r}, t)-g_{a \gamma \gamma} a(\vec{r}, t) c \overrightarrow{B_{0}}(\vec{r}, t)\right)=\mu_{0} \vec{J}_{e_{1}} \\
& \nabla \cdot \vec{B}_{1}(\vec{r}, t)=0 \\
& \nabla \times \vec{E}_{1}(\vec{r}, t)+\partial_{t} \vec{B}_{1}(\vec{r}, t)=0
\end{aligned}
$$

Modified Axion

 Electrodynamics
(Represents two

 photons)$$
\nabla \cdot \vec{E}=\frac{\rho_{e}}{\varepsilon_{0}}+c g_{a \gamma \gamma} \vec{B} \cdot \nabla a
$$

Applied Background Field

$$
\vec{\nabla} \cdot \vec{D}_{1}=\rho_{e 1}
$$

$$
\vec{\nabla} \times \vec{E}_{1}=-\partial_{t} \vec{B}_{1}
$$

$$
\frac{1}{\epsilon_{0}} \vec{D}_{1}=\vec{E}_{1}-g_{a r y} c a \vec{B}_{0}
$$

$$
\nabla \times \vec{B}_{0}=\mu_{0} \epsilon_{0} \partial_{t} \vec{E}_{0}+\mu_{0} \vec{J}_{e_{0}}
$$

$$
\nabla \times \vec{B}-\frac{1}{c^{2}} \partial_{t} \vec{E}=
$$

$$
\mu_{0} \vec{J}_{e}-g_{a \gamma \gamma} \epsilon_{0} c\left(\vec{B} \partial_{t} a+\nabla a \times \vec{E}\right)
$$

Measure Created Photon

$\nabla \cdot \vec{B}=0$
$\nabla \times \vec{E}+\partial_{t} \vec{B}=0$

$$
\begin{aligned}
& \nabla \cdot\left(\vec{E}_{1}(\vec{r}, t)-g_{a r y} a(t) c \vec{B}_{0}(\vec{r}, t)\right)=\frac{\rho_{e_{1}}}{\epsilon_{0}} \\
& \nabla \times\left(\vec{B}_{1}(\vec{r}, t)+\frac{g_{a r y} a(t)}{c} \vec{E}_{0}(\vec{r}, t)\right) \\
& -\frac{1}{c^{2}} \partial_{t}\left(\vec{E}_{1}(\vec{r}, t)-g_{a r y} a(\vec{r}, t) c \vec{B}_{0}(\vec{r}, t)\right)=\mu_{0} \vec{J}_{e_{1}} \\
& \nabla \cdot \vec{B}_{1}(\vec{r}, t)=0 \\
& \nabla \times \vec{E}_{1}(\vec{r}, t)+\partial_{t} \vec{B}_{1}(\vec{r}, t)=0 .
\end{aligned}
$$

Eg. Solenoidal DC Magnetic field: Defined by a surface when $\lambda_{a}>$ Experiment

Eg. Solenoidal DC Magnetic field: Defined by a surface when $\lambda_{a}>$ Experiment

Eg. Solenoidal DC Magnetic field: Defined by a surface when $\lambda_{a}>$ Experiment $\vec{B}_{C}(\vec{r})=\frac{\mu_{0}}{4 \pi} \int_{\Omega} \frac{\vec{\nabla} \times \vec{j}_{D C}\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} \mathrm{d}^{\vec{z} \vec{r}^{\prime},}$

Eg. Solenoidal DC Magnetic field: Defined by a surface when $\lambda_{a}>$ Experiment

 $\vec{B}_{D C}(\vec{r})=\frac{\mu_{0}}{4 \pi} \int_{\Omega} \frac{\vec{\nabla} \times \vec{J}_{D}^{i}\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} d^{3} \vec{r}^{\prime}$,$$
\frac{1}{\epsilon_{0}} \vec{D}_{1}=\vec{E}_{1}-g_{a r y} c a \vec{B}_{D C}
$$

Eg. Solenoidal DC Magnetic field: Defined by a surface when $\lambda_{a}>$ Experiment

 $\vec{B}_{D C}(\vec{r})=\frac{\mu_{0}}{4 \pi} \int_{\Omega} \frac{\vec{\nabla} \times \vec{j}_{D}^{i}\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} d^{3} \vec{r}^{\prime}$,$$
\begin{gathered}
\frac{1}{\epsilon_{0}} \vec{D}_{1}=\vec{E}_{1}-g_{a y \gamma} c a \vec{B}_{D C} \\
\frac{1}{\epsilon_{0}} \vec{P}_{1 a}=-g_{a r \gamma} a(t) c \vec{B}_{D C}(\vec{r}, t)
\end{gathered}
$$

Eg. Solenoidal DC Magnetic field: Defined by a surface when $\lambda_{a}>$ Experiment
$\vec{B}_{D C}(\vec{r})=\frac{\mu_{0}}{4 \pi} \int_{\Omega} \frac{\vec{\nabla} \times \vec{J}_{D}^{i}\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} \mathrm{d}^{3} \vec{r}^{\prime}$,

$$
\begin{aligned}
\quad \frac{1}{\epsilon_{0}} \vec{D}_{1} & =\vec{E}_{1}-g_{a r y} c a \vec{B}_{D C} \\
\frac{1}{\epsilon_{0}} \vec{P}_{1 a} & =-g_{a r y} a(t) c \vec{B}_{D C}(\vec{r}, t) \quad=-\frac{1}{4 \pi} \int_{\Omega} \frac{\vec{\nabla} \times \vec{J}_{m a}^{i}\left(\vec{r}^{\prime}, t\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} \mathrm{d}^{3} \vec{r}^{\prime}
\end{aligned}
$$

Eg. Solenoidal DC Magnetic field: Defined by a surface when $\lambda_{a}>$ Experiment

Eg. Solenoidal DC Magnetic field: Defined by a surface when $\lambda_{a}>$ Experiment

Eg. Solenoidal DC Magnetic field: Defined by a surface when $\lambda_{a}>$ Experiment

Like an Electric Polarization with non-zero Curl:

$$
\vec{j}_{m a}^{\prime}(\vec{r}, t)=g_{a \gamma \gamma} a(t) c \mu_{d} \vec{j}_{j c}^{\dot{j}}(\vec{r}) .
$$

Like an Electric Polarization with non-zero Curl:

Like an Electric Polarization with non-zero Curl:

$$
\vec{j}_{m a}^{\prime}(\vec{r}, t)=g_{a \gamma \gamma} a(t) c \mu_{d} \vec{j}_{j c}^{\dot{j}}(\vec{r}) .
$$

Extra surface term in the solution to the equation of motion

This surface cannot go to infinity due to the solenoidal nature of a DC magnetic field
Like an Electric Polarization with non-zero Curl:

$$
\vec{J}_{m a}^{\prime}(\vec{r}, t)=g_{a \gamma \gamma} a(t) c \mu_{0} \vec{J}_{D C}^{\prime}(\vec{r}) .
$$

Extra surface term in the solution to the equation of motion
This surface cannot go to infinity due to the solenoidal nature of a DC magnetic field Assuming the total derivative is zero also assumes all surfaces go to infinity

Extra surface term in the solution to the equation of motion
This surface cannot go to infinity due to the solenoidal nature of a DC magnetic field Assuming the total derivative is zero also assumes all surfaces go to infinity Polarization generated by axion induced fictitious magnetic current boundary -> similar to an electret or voltage source : Has an Electric Vector Potential!

Bulk polarization modifies the boundary Luttinger theorem

PHYSICAL REVIEW RESEARCH 3, 023011 (2021)

Electric polarization as a nonquantized topological response and boundary Luttinger theorem
Xue-Yang Song $\oplus,{ }^{1,2}$ Yin-Chen $\mathrm{He} \odot,{ }^{2}$ Ashvin Vishwanath, ${ }^{1}$ and Chong Wang ${ }^{2}$
${ }^{1}$ Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
(ब) (Received 22 February 2021; accepted 5 March 2021; published 2 April 2021)

ELECTRET VOLTAGE SOURCE

Bulk polarization modifies the boundary Luttinger theorem

PHYSICAL REVIEW RESEARCH 3, 023011 (2021)

Electric polarization as a nonquantized topological response and boundary Luttinger theorem
Xue-Yang Song $\oplus,{ }^{1,2}$ Yin-Chen $\mathrm{He} \odot,{ }^{2}$ Ashvin Vishwanath, ${ }^{1}$ and Chong Wang ${ }^{2}$
${ }^{1}$ Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA ${ }^{2}$ Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
(1) (Received 22 February 2021; accepted 5 March 2021; published 2 April 2021)

ELECTRIC POLARIZATION AS A NONQUANTIZED

FIG. 2. The semiclassical picture relates projective representation of monopoles to polarization by electromagnetic duality that exchanges magnetic monopole and electric charge. The electric displacement field (left) $\mathbf{D}=\mathbf{P}$ is mapped to magnetic field (right) $\tilde{\mathbf{B}}=2 \pi \mathbf{D}$ and the monopole to an electric charge. The AharonomBohm (AB) phase θ_{AB} seen by the electric charge is proportional to magnetic field (right), hence the monopole Berry phase proportional to displacement field (left)

ELECTRET VOLTAGE SOURCE

Bulk polarization modifies the boundary Luttinger theorem

$$
\text { PHYSICAL REVIEW RESEARCH 3, } 023011 \text { (2021) }
$$

Electric polarization as a nonquantized topological response and boundary Luttinger theorem

> Xue-Yang Song $\oplus,{ }^{1,2}$ Yin-Chen He $\odot,^{2}$ Ashvin Vishwanath, ${ }^{1}$ and Chong Wang ${ }^{2}$
> ${ }^{1}$ Department of Physics, Harvard University, Cambridge, Massachusetts O2138, USA ${ }^{2}$ Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
(a) (Received 22 February 2021; accepted 5 March 2021; published 2 April 2021)

PHYSICAL REVIEW RESEARCH 3, 023011 (2021)

ELECTRIC POLARIZATION AS A NONQUANTIZED

FIG. 2. The semiclassical picture relates projective representation of monopoles to polarization by electromagnetic duality that exchanges magnetic monopole and electric charge. The electric displacement field (left) $\mathbf{D}=\mathbf{P}$ is mapped to magnetic field (right) $\tilde{\mathbf{B}}=2 \pi \mathbf{D}$ and the monopole to an electric charge. The AharonomBohm (AB) phase θ_{AB} seen by the electric charge is proportional to magnetic field (right), hence the monopole Berry phase proportional to displacement field (left)

TABLE I. Polarization density \mathbf{P} is related to the properties of the monopoles in dimensions $d=1,2,3$.

	Monopole property	Polarization
1D	Berry phase	$\Phi=2 \pi P$
2D	Momentum	$\mathbf{\mathbf { k } _ { \mathcal { M } }}=2 \pi \widehat{\mathrm{z}} \times \mathbf{P}$
3D	Projective momentum	$T_{j}^{-1} T_{i}^{-1} T_{j} T_{i}=\exp \left(i 2 \pi \epsilon^{i j k} P_{k}\right)$

We summarize the connection between bulk polarization and monopole (instanton) properties in $d=1,2,3$ in Table I.

ELECTRET VOLTAGE SOURCE

Bulk polarization modifies the boundary Luttinger theorem

$$
\text { PHYSICAL REVIEW RESEARCH 3, } 023011 \text { (2021) }
$$

Electric polarization as a nonquantized topological response and boundary Luttinger theorem
Xue-Yang Song $\oplus,{ }^{1,2}$ Yin-Chen He $\odot{ }^{2}$ Ashvin Vishwanath, ${ }^{1}$ and Chong Wang ${ }^{2}$
${ }^{1}$ Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
${ }^{1}$ Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA ${ }^{2}$ Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
(ब) (Received 22 February 2021; accepted 5 March 2021; published 2 April 2021)

PHYSICAL REVIEW RESEARCH 3, 023011 (2021)

TABLE I. Polarization density \mathbf{P} is related to the properties of the monopoles in dimensions $d=1,2,3$.

	Monopole property	Polarization
1D	Berry phase	$\Phi=2 \pi P$
2D	Momentum	$\mathbf{k}_{\mathcal{M}}=2 \pi \widehat{z} \times \mathbf{P}$
3D	Projective momentum	$T_{j}^{-1} T_{i}^{-1} T_{j} T_{i}=\exp \left(i 2 \pi \epsilon^{i j k} P_{k}\right)$

We summarize the connection between bulk polarization and monopole (instanton) properties in $d=1,2,3$ in Table I.

ELECTRIC POLARIZATION AS A NONQUANTIZED

FIG. 2. The semiclassical picture relates projective representation of monopoles to polarization by electromagnetic duality that exchanges magnetic monopole and electric charge. The electric displacement field (left) $\mathbf{D}=\mathbf{P}$ is mapped to magnetic field (right) $\tilde{\mathbf{B}}=2 \pi \mathbf{D}$ and the monopole to an electric charge. The AharonomBohm (AB) phase θ_{AB} seen by the electric charge is proportional to magnetic field (right), hence the monopole Berry phase proportional to displacement field (left).

APPENDIX C: POLARIZATION AND OTHER TOPOLOGICAL QUANTITIES

$$
\begin{equation*}
\frac{\Theta}{4 \pi^{2}} \mathbf{E} \cdot \mathbf{B} \tag{C1}
\end{equation*}
$$

$$
\begin{equation*}
\Delta \mathbf{P}=\frac{\Theta}{4 \pi^{2}} \mathbf{B} \tag{C2}
\end{equation*}
$$

PHYSICAL REVIEW APPLIED

Highlights Recent Subjects Accepted Collections Authors Referees Search Press

Electrodynamics of Free- and Bound-Charge Electricity Generators Using Impressed Sources

Michael E. Tobar, Ben T. McAllister, and Maxim Goryachev
Phys. Rev. Applied 15, 014007 - Published 6 January 2021

Professor Michael Tobar
Director

Dr Maxim Goryachev
Lecturer, Research Intensive

Dr Ben McAllister
Forrest Prospect Fellow

Sensitivity of Low-Mass and Resonant Axion Haloscopes

PHYSICAL REVIEW D 105, 045009 (2022)

Poynting vector controversy in axion modified electrodynamics
Michael E. Tobar®," Ben T. McAllister, and Maxim Goryachev ARC Centre of Excellence for Engineered Quantum Systems and ARC Centre of Excellence for Dark Matter Particle Physics, Department of Physics, University of Western Australia,

35 Stirling Highway, Crawley, Western Australia 6009, Australia
(a) (Received 9 September 2021; accepted 28 January 2022; published 15 February 2022)

Physics of the Dark Universe 26 (2019) 100339

	Contents lists available at ScienceDirect Physics of the Dark Universe journal homepage: www.elsevier.com/locate/dark	E derkinverse

Modified axion electrodynamics as impressed electromagnetic sources through oscillating background polarization and magnetization
Michael E. Tobar*, Ben T. McAllister, Maxim Goryachev
ARC Centre of Excellence For Engineered Quantum Systems, Department of Physics, School of Physics, Mathematics and Computing, University of
Western Australia, 35 Stiring Highway, Crawley WA 6009, Australia

$E=m c^{2}$

Broadband electrical action sensing techniques with conducting wires for low-mass dark matter axion detection Michael E. Tobar ${ }^{*}$, Ben T. McAllister, Maxim Goryachev ARC Centre of Excellence For Engineered Quantum Systems, Department of Physics, University of Western Australia, 35 Stirling ARC Centre of Excellence For Engineere
Highway, Crawley WA 6009, Australia

