Axion Searches at Storage Rings

J. Pretz RWTH Aachen & FZ Jülich

PSTP, Mainz, September 2022

Axions/Axion Like Particles (ALPs)

- hypothetical elementary particle postulated by the Peccei–Quinn to resolve the strong CP problem
- axion are also dark matter candidates
- axion like particles (ALP): similar properties as axions, (but ALPs don't solve the strong QCD problem)
- huge experimental effort to search for axion/ALPs (haloscopes, helioscopes, light shining through the wall, mainly coupling to photons)
- in storage rings with polarized beams axion-gluon/nucleon coupling and direct effect on spin can be studied

Spin Motion in storage ring

with respect to momentum vector in magnetic field

$rac{dec{S}}{dt} = (ec{\Omega}_{ ext{MDM}} + ec{\Omega}_{ ext{EDM}} + ec{ ext{D}}_{ ext{EDM}} + ec{ ext{MDM}})$	$-ec{\Omega}_{ ext{wind}}) imesec{\mathcal{S}}$		
$ec{\Omega}_{ ext{MDM}} = -rac{q}{m} \; G ec{B}$,	$ec{\mu} = g rac{q\hbar}{2m} ec{S} =$	$(1+G)rac{q\hbar}{m}ec{S}$	
S, II	Β G g μ S q,m	magnetic field magnetic anomaly <i>g</i> -factor magnetic moment spin mass, charge	

Spin Motion in storage ring

with respect to momentum vector in magnetic field

$$\frac{d\vec{S}}{dt} = (\vec{\Omega}_{\text{MDM}} + \vec{\Omega}_{\text{EDM}} + \vec{\Omega}_{\text{wind}}) \times \vec{S}$$

$$\vec{\Omega}_{\text{MDM}} = -\frac{q}{m} G\vec{B}$$

$$\vec{\Omega}_{\text{EDM}} = -\frac{1}{S\hbar} \frac{d c \vec{\beta} \times \vec{B}}{2f_a} (\hbar \partial_0 a(t)) \vec{\beta}$$

exign field: $a(t) = a \cos(\alpha t t + \beta)$, $d = d - d - \cos(\alpha t t + \beta)$

axion field: $a(t) = a_0 cos(\omega_a t + \phi_0)$ $d = d_{DC} + d_{AC} cos(\omega_a t + \phi_0)$ $\hbar \omega_a = m_a c^2$ $d_{AC} = a_0 g_{ad\gamma}$

Axion Experiment at storage rings

Principle of experiment

- store polarized hadrons
- maintain precession in horizontal plane
- if $m_a c^2 = \Omega_{\text{MDM}} \hbar$, polarization will turn out of the horizontal plane, resulting in a vertical polarization component
- Vertical polarization can be measured using a polarimeter (in case of deuteron: deuteron carbon scattering)
- AC measurement (i.e. systematics are under control)
- axion wind effect enhanced in storage rings ($v_{\text{particle}} \approx c$)
- one can either scan a certain mass range by scanning Ω_{MDM} or measure at a fixed frequency to look for ALP at a specific mass.

Axion Analysis: d_{AC} , results from COSY

• a few days of beam time • $f_{AC} = \frac{1}{2\pi} \frac{m_a c^2}{\hbar} = \gamma G f_{rev}$

https://arxiv.org/abs/2208.07293

How to explore a wider mass range m_a

 $\Omega_{\mathrm{MDM}} = \gamma \mathbf{G} \Omega_{\mathit{rev}}$

- modify beam energy (changes γ , Ω_{rev})
- e use different nuclei (changes G)
- Use additional electric field

$$ec{\Omega}_{ ext{MDM}} = -rac{m{q}}{m} \left[m{G} ec{m{B}} - \left(m{G} - rac{m{1}}{\gamma^2 - m{1}}
ight) rac{ec{m{eta}} imes ec{m{E}}}{m{c}}
ight]$$

Axion Searches at storage rings

