

Time Invariance ViOLating Interactions Exploiting spin as a "time-reversal" knob

Paolo Lenisa

University of Ferrara and INFN

for the PAX and JEDI Collaborations

Mainz - September 29th, 2022

TIVOLI: motivation

 $\overline{A_{Y,XZ}}$ "pure" T-violating observable in \overrightarrow{p} - \overrightarrow{d} scattering

- Total cross section:
 - $\sigma_{total} = \sigma_0 (1 + A_{Y,XZ} P_Y^{beam} P_{XZ}^{target})$
- Experimental approach: spin as a "time-reversal" knob

- Requirements:
 - Vector pol. p-beam: P_Y^{beam}
 - Tensor pol. d-target: P_{XZ}^{target}

TIVOLI: motivation

 $\overline{A_{Y,XZ}}$ "pure" T-violating observable in \overrightarrow{p} - \overrightarrow{d} scattering

- Total cross section:
 - $\sigma_{total} = \sigma_0 (1 + A_{Y,XZ} P_Y^{beam} P_{XZ}^{target})$
- Experimental approach: spin as a "time-reversal" knob

- Requirements:
 - Vector pol. p-beam: P_Y^{beam}
 - Tensor pol. d-target: P_{XZ}^{target}

BSM physics search complementary to EDM search

Paolo Lenisa (Unife)

PSTP 2022

Storage rings offer a unique experimental environment

- Optical theorem relates forward scattering amplitude to total cross-section
- Use of storage ring as a zero degree detector
- Total cross section affects beam lifetime $(I = I_0 e^{-\sigma \rho_d})$
- Sensitive beam current sensor required

Storage rings offer a unique experimental environment

- Optical theorem relates forward scattering amplitude to total cross-section
- Use of storage ring as a zero degree detector
- Total cross section affects beam lifetime $(I = I_0 e^{-\sigma \rho_d})$
- Sensitive beam current sensor required

• Objective: improve the limit on α_T by 1-2 orders of magnitude

Interaction point (commissioned at COSY)

- Low-beta section
- Polarized target with storage cell
- Silicon vertex detector for target and beam polarimetry

Polarized internal H/D target with storage cell

Polarized H/D target and Breit-Rabi polarimeter

Injection and online monitoring of target polarization

Polarized internal H/D target with storage cell

Polarized H/D target and Breit-Rabi polarimeter

Injection and online monitoring of target polarization

Openable storage cell

- Increases target density by 2 orders of magnitude
- Opens at beam injection to increase ring acceptance

Paolo Lenisa (Unife)

PSTP 2022

Si vertex-detector for target and beam polarimetry

Multipurpose silicon telescope detector installed around the storage cell

- p-p (and p
 -p) elastic
 p-d elastic
- deuteron breakup
- In the range 40-150 MeV beam energy

Si vertex-detector for target and beam polarimetry

Multipurpose silicon telescope detector installed around the storage cell

- p-p (and \bar{p} -p) elastic
- p-d elastic
- deuteron breakup
- In the range 40-150 MeV beam energy

Purpose of detector for the TIVOLI experiment:

- absolute measurement of the deuteron target polarization
- calibration of the Breit-Rabi polarimeter for d
 - A_y in p-d elastic scattering
- measurement of the beam polarization
- beam position monitor in the cell

Fast Current Transformer

- Inductive pickups with bunched beam
- Preliminary test at COSY in the range: $4 \times 10^4 2 \times 10^9$ stored protons

Conclusions

TIVOLI

- T-violating interactions not easily experimentally accessible
 - $A_{Y,XZ}$ "pure" T-violating observable in $\overrightarrow{p} \cdot \overrightarrow{d}$ scattering
- Search for physics BSM
 - TIVOLI (T-odd/P-even) complementary to EDMs (P-odd,T-odd)
- Storage rings represent an ideal zero-degree detector
 - Exploitation of beam and target polarization as "time-reversal" knob

Potential improvement of 1-2 orders of magnitude limit on $\alpha_{\mathcal{T}}$

Conclusions

TIVOLI

- T-violating interactions not easily experimentally accessible
 - $A_{Y,XZ}$ "pure" T-violating observable in $\overrightarrow{p} \cdot \overrightarrow{d}$ scattering
- Search for physics BSM
 - TIVOLI (T-odd/P-even) complementary to EDMs (P-odd,T-odd)
- Storage rings represent an ideal zero-degree detector
 - Exploitation of beam and target polarization as "time-reversal" knob

Potential improvement of 1-2 orders of magnitude limit on α_T

Implementation in ESR

- Staged approach required
 - Polarized jet target
 - Polarized proton beam in ESR and polarization preservation
 - Implementation of low- β section with storage cell and detector
 - Further improvement: long spin-coherence time

Measurement	Limit	Comments	Ref.
γ-γ correlations in ⁵⁷ Fe	$\alpha_{\rm T} < 5 \cdot 10^{-6}$	direct T-V	[14]
\vec{n} transmission through polarized	$g_{\rho T} < 2.3 \cdot 10^{-2}$	direct T -V;	[15,16]
¹⁶⁵ Ho target	$\alpha_{T} < 2.8 \cdot 10^{-4}$	heavy target corrections	
Detailed balance in	$\alpha_{\rm T} \sim 10^{-3}$	direct T -V;	[17]
p+ ²⁷ Al is ⁴ He+ ²⁴ Mg		kinematic corrections	
Charge Symmetry Breaking (CSB) ΔA	$g_{\rho T} < 6.7 \cdot 10^{-3}$	direct T-V	[18,19]
for polarized np and pn scattering	-		
Polarization, analyzing power in	$g_{\rm T} < 3 \cdot 10^{-2}$	direct T'-V	[30]
(pol.) p-p scattering			
Time evolution in B ⁰ mesons;	$\Delta S_{T^{+}} = -1.37 + -0.15 < 0$	direct T'-V; 1st observ.,	[31]
exchange of $ i\rangle$ and $ f\rangle$ state	$\Delta S_{T} = 1.17 + 0.21 > 0$	consistent with CP-V	
Time evolution $K^0 \leftarrow \rightarrow K^0$ bar transition		indirect (via CP-V)	
probabilities (flavor mixing asymmetry)			
Double pol. pd-scatt. Awar "null observable"	Goal: δA _{x.vz} ~ 10-6	direct T'-V	TIVOLI

[14] N. K. Cheung, H. E. Henrikson and F. Boehm, Phys. Rev. C 16, 2381 (1977)

- [15] J. E. Koster et al., Phys. Lett. B 267, 23 (1991)
- [16] P. R. Huffman et al., Phys. Rev. C 55, 2684 (1997)
- [17] E. Blanke et al., Phys. Rev. Lett. 51, 355 (1983)
- [18] M. Beyer, Nucl. Phys. A 560, 895 (1993)

[30] C.F. Hwang et al., Phys. Rev. 119, 352 (1960).

[31] J.P. Lees et al. (Babar Collaboration), Phys. Rev. Lett. 109, 211801 (2012)