

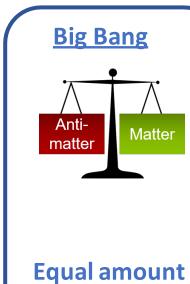
Simulations Of Beam Losses For The Prototype Electric Dipole Moment Storage Ring

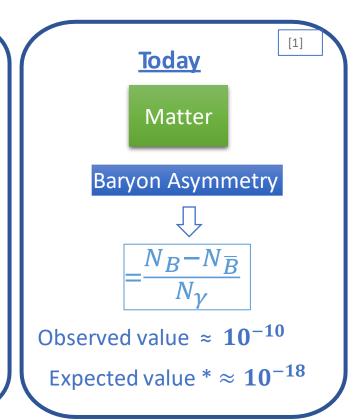
28.09.2022

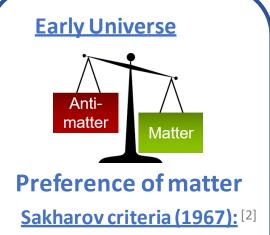
Workshop on PSTP-22 Mainz

Saad Siddique

- Introduction
- **EDM Measurement using Storage Ring**
- 3) Prototype EDM Storage Ring
- **Simulation Results**
- Conclusion






INTRODUCTION

Equal amoun of matter & antimatter

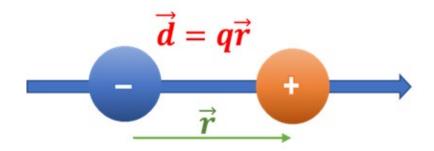
violation

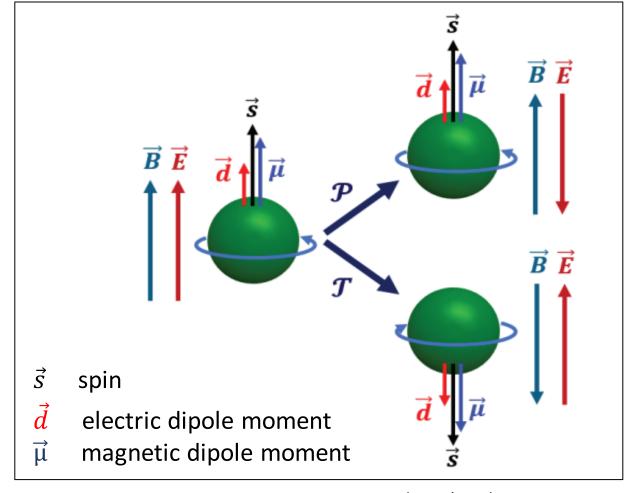
Baryon number

- No thermic equilibrium
- \mathcal{C} , \mathcal{CP} violation

Search for \mathcal{CP} violation beyond the Standard Model

* Cosmological Models





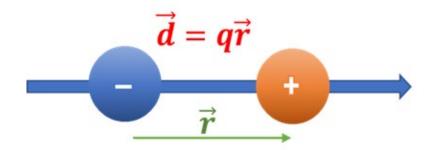
Electric Dipole Moment (EDM)

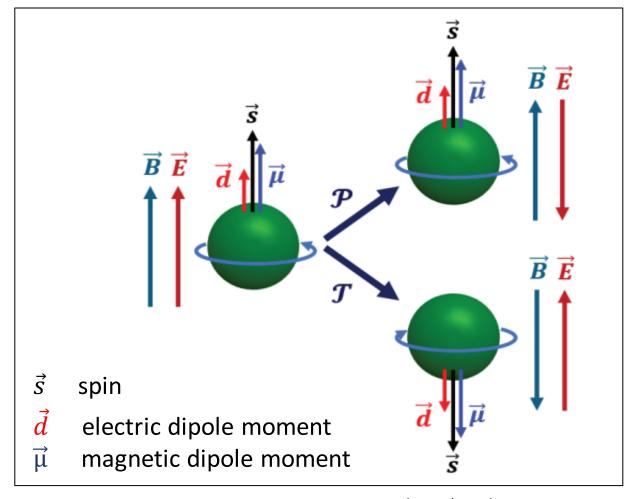
- **EDM**: a permanent separation of positive and negative charge (vector along spin direction)
- Fundamental property of particles (like mass, charge, magnetic moment)
- Existence of EDM only possible if violation of time reversal and parity symmetry

$$H = H_M + H_E = -\vec{\mu} \cdot \vec{B} - \vec{d} \cdot \vec{E}$$

$$P: H = -\vec{\mu} \cdot \vec{B} + \vec{d} \cdot \vec{E}$$

$$T: H = -\vec{\mu} \cdot \vec{B} + \vec{d} \cdot \vec{E}$$





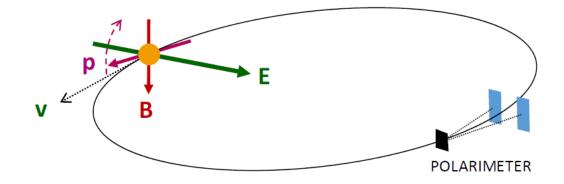
Electric Dipole Moment (EDM)

- **EDM**: a permanent separation of positive and negative charge (vector along spin direction)
- Fundamental property of particles (like mass, charge, magnetic moment)
- Existence of EDM only possible if violation of time reversal and parity symmetry

$$H = H_M + H_E = -\vec{\mu} \cdot \vec{B} - \vec{d} \cdot \vec{E}$$

$$P: H = -\vec{\mu} \cdot \vec{B} + \vec{d} \cdot \vec{E}$$

$$T: H = -\vec{\mu} \cdot \vec{B} + \vec{d} \cdot \vec{E}$$



EDM MEASUREMENT USING STORAGE RING

Basic Principle

- 1) Inject longitudinally polarized beam in storage ring
- 2) Radial electric field interacting with EDM (torque)
- 3) Observe vertical polarization with time

Spin motion: **Thomas-BMT-Equation**

$$\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{S} = (\vec{\Omega}_{MDM} + \vec{\Omega}_{EDM}) \times \vec{S}$$

$$\vec{\Omega} = \frac{q}{m} \left\{ G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left\{ \frac{\vec{E}}{c} + \vec{\beta} \times \vec{B} \right\} \right\}$$

Frozen Spin
$$\overrightarrow{B} = 0$$
 $\left(G - \frac{1}{\gamma^2 - 1}\right) \equiv \theta!$

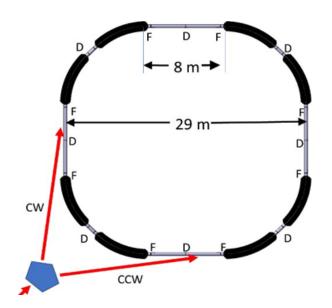
If $G > 0 \rightarrow$ pure electric ring
If $G < 0 \rightarrow$ combination of E-B

Magic momentum

[3]

Stage 1

Precursor experiment at COSY FZ Jülich

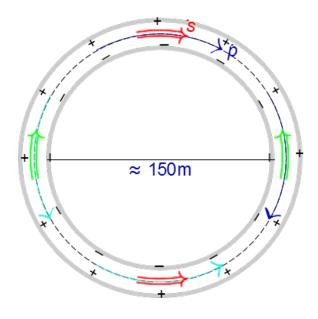

- Magnetic storage ring
- Deuterons with p= 970 MeV/c

Advancement towards final storage ring will

- Decrease the systematic errors
- Increase EDM measurement`s precision

Stage 2

Prototype proton storage ring



- Electric magnetic storage ring
- Simultaneous CW and CCW beams
- Operates at 30 MeV and 45 MeV

Stage 3

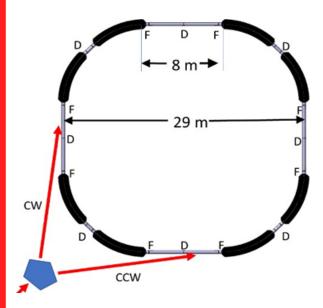
[4]

Final storage ring

- Pure Electrostatic storage ring
- Proton Magic momentum (701MeV/c)

Stage 1

Precursor experiment at COSY at FZ Jülich

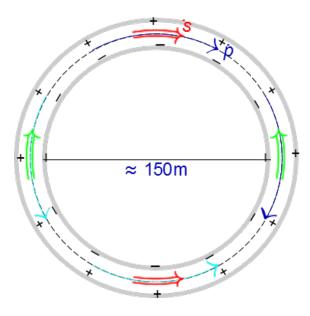

- Magnetic storage ring
- Deuterons with p= 970 MeV/c

Advancement towards final storage ring wil

- Decrease the systematic errors
- Increase EDM measurement's precision

Stage 2

Prototype proton storage ring



- Electric magnetic storage ring
- Simultaneous CW and CCW beams
- Operates at 30 MeV and 45 MeV

Stage 3

[4]

Final storage ring

- Pure Electrostatic storage ring
- Proton Magic momentum (701MeV/c)

PROTOTYPE EDM STORAGE RING [5]

Goals:

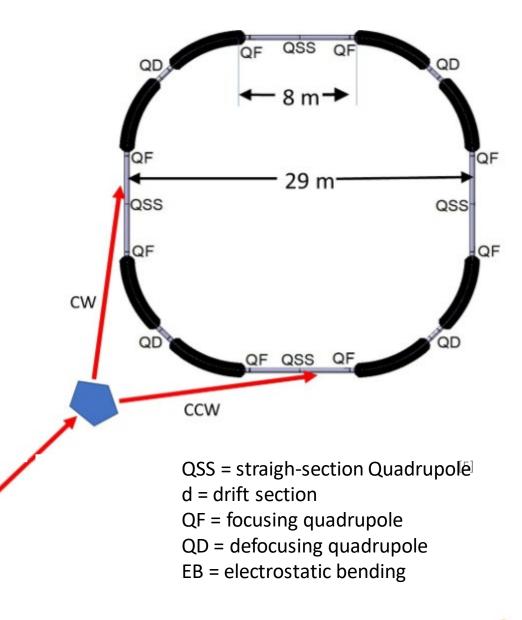
- Frozen spin capability
- Storage of high intensity CW and CCW beams simultaneously Beam life time > 1000 s
- Beam injection with multiple polarization states
- Develop and benchmark simulation tools
- Develop key technologies beam cooling, deflector, beam position monitors, magnetic shielding....
- Perform EDM measurement

PROTOTYPE EDM STORAGE RING [5]

Goals:

Frozen spin capability

- my TASK
- lacktriangle Storage of high intensity CW and CCW beams simultaneously Beam life time > 1000~s
- Beam injection with multiple polarization states
- Develop and benchmark simulation tools
- Develop key technologies beam cooling, deflector, beam position monitors, magnetic shielding....
- Perform EDM measurement



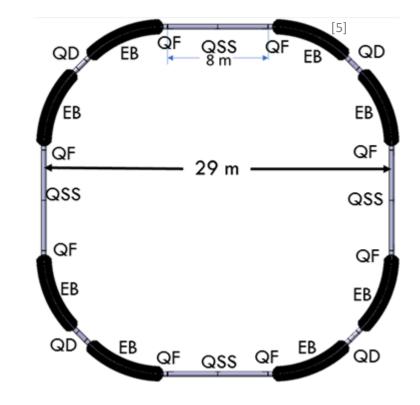
RING DESIGN AND PARAMETERS [5]

Basic layout

- Fourfold symmetric squared ring
- Circumference ≈ 123 m
- Three families of quadrupoles will be used
 - i. Focusing QF
 - ii. Defocusing QD
 - iii. Straight section QSS
- Ring will be operated in two modes
 - i. With all electric bendings (at T=30 MeV)
 - ii. With electric and magnetic bendings (at T=45 MeV)

SIMULATION RESULTS

- Lattice Optics
- Estimations of Beam Losses



LATTICE OPTICS:

■ MADX (Methodical Accelerator Design)

One cell = QSS-d-QF-d-EB-d-QD-d-EB-d-QF-d-QSS

Lattice type	$oldsymbol{eta}_{y-max}$ (m)	Q_x	Q_y
Strong	33	1.754	1.227
Medium	100	1.835	1.748
Weak	200	1.796	1.881
Weaker	300	1.770	1.923

Lattice Flexibility:

Betatron tunes

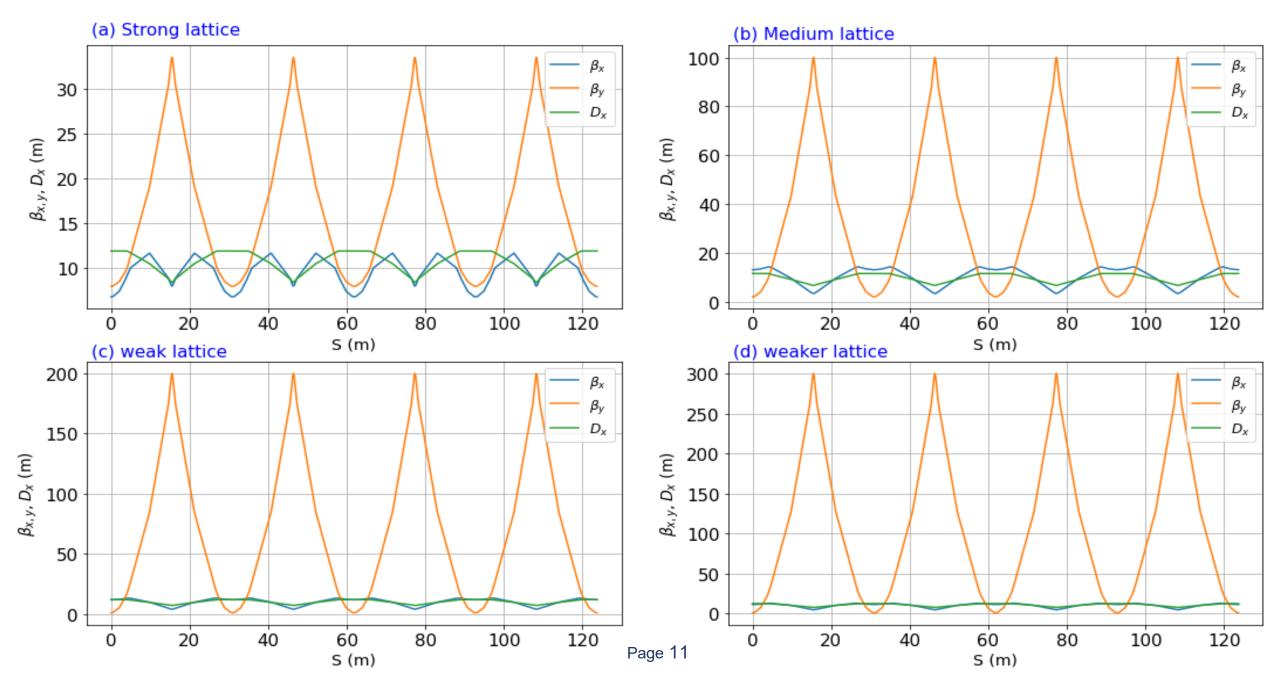
Betatron functions

$$0.2 \le Q_x \le 2.5$$

$$\beta_{\chi} \leq 20 \ m$$

$$0.1 \leq Q_{\gamma} \leq 2.5$$

$$\beta_{\gamma} \leq 400 m$$



LATTICE GENERATION:

ESTIMATION OF BEAM LOSSES [9,10,11,12]

Four main effects of beam losses

- 1. Hadronic Interactions
- 2. Coulomb Scattering
- 3. Energy Loss Straggling
- 4. Intra Beam Scattering

i. Residual Gas

- Gases are $H_2: N_2$ with 80:20
- $\sigma_{tot} = 204 \text{ mb}$
- Nitrogen equivalent pressure $P_{eq} = 3.7 \times 10^{-11} \, mbar$
- $n_{rg} = 5.30 \times 10^5 \ atoms/cm^3$
- $f_0 = 0.596 \text{MHz}$

Two different scenarios

- I. With Residual Gas
- II. With Residual Gas + Target

ii. Target

• Carbon target with thickness $n_t \sim 2 \times 10^{12} \ atoms \ /cm^2$

Calculations for four lattices are performed in each case

1. Hadronic interaction

$$\tau^{-1} = n\sigma_{tot}f_0$$

 $\tau_{loss} = beam \ loss \ rate$ n = target thickness or rest gas density $\sigma_{tot} = total\ cross\ section$ $f_0 = revolution frequency$

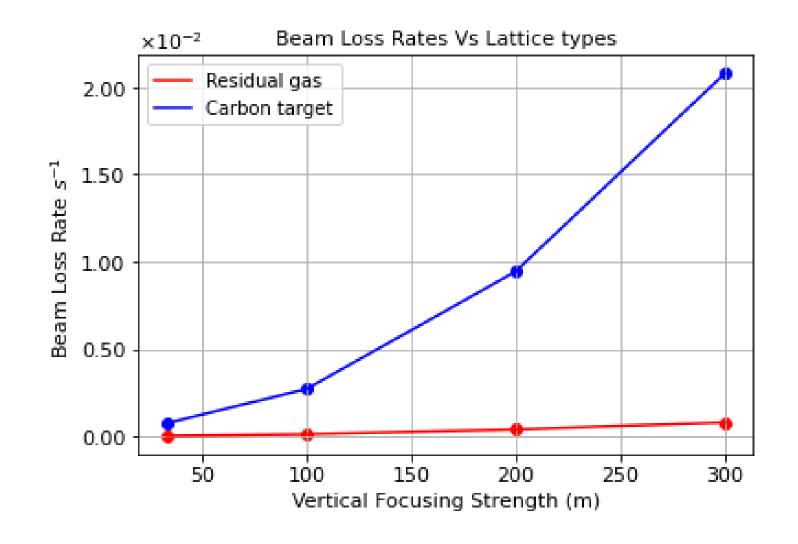
Residual gas

$$\tau^{-1} = 3.51 \times 10^{-9} \, s^{-1}$$

$$\tau^{-1} = 2.14 \times 10^{-6} \, s^{-1}$$

As there is no dependency on optical functions this effect remains the same for all lattices

2. Coulomb Scattering


$$\tau^{-1} = n\sigma_{tot}f_0$$

Where : $\sigma_{tot} \propto \frac{1}{\gamma\beta \theta}$

and

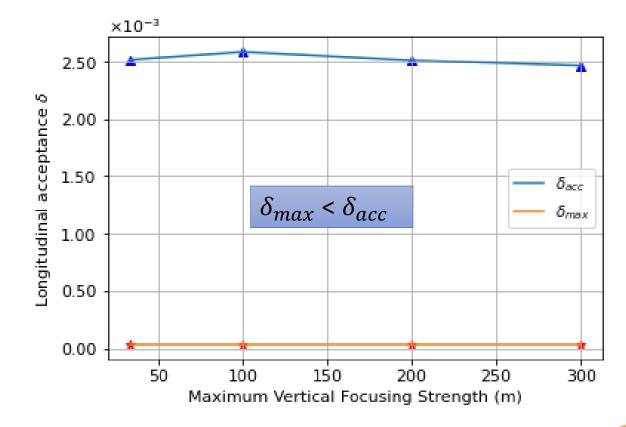
$$\theta = \sqrt{\frac{A}{\beta_{\perp}}}$$

A=Transverse acceptance > 10 mm mrad β_{\perp} = Transverse betatron amplitude

3. Energy Loss Straggling

$$\tau^{-1} = f_0 \mathbf{P}$$

P=relative beam loss probability per turn


Probability depends on maximum energy loss (ϵ_{max}) and longitudinal acceptance (δ_{max})

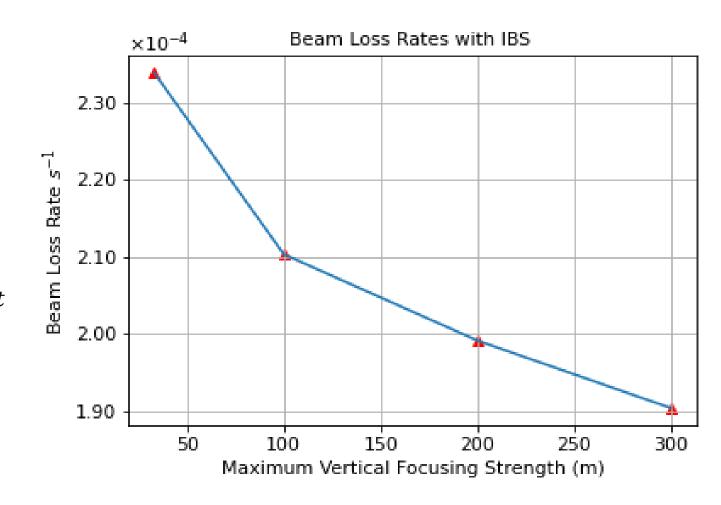
$$\epsilon_{max} = 66.32 \ keV$$

$$\bigcup_{\delta_{max}} \delta_{max} = 3.35 \times 10^{-5}$$

Geometrical longitudinal acceptance

$$\delta_{acc} = \frac{chamber\ radius}{Max.\ dispersion} = \frac{30\ mm}{D_{max}}$$

No beam loss with T=30 MeV theoretically



4. IntraBeam Scattering (IBS)

$$au_{loss}^{-1} = rac{D_{\parallel}^{IBS}}{L_c \delta_{acc}^2}$$

$$D_{\parallel}^{IBS} = \frac{N}{(\gamma \beta) \epsilon^{3/2} \sqrt{\beta}}$$

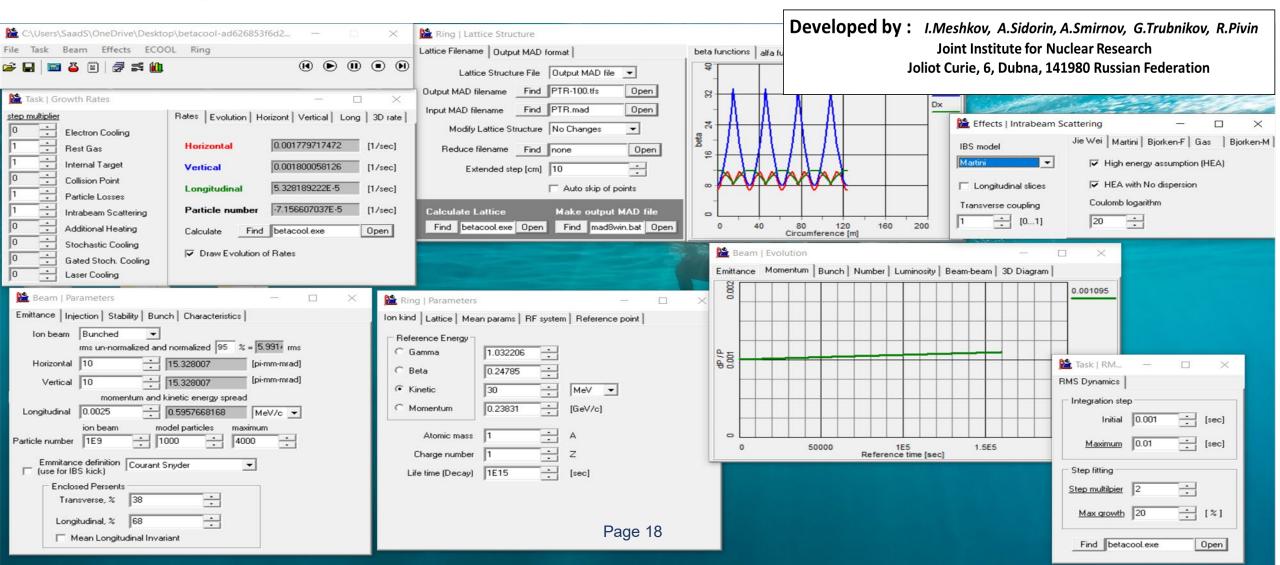
 $D_{\parallel}^{IBS} = longitudinal\ diffusion\ coefficient$ $\epsilon = emittance\ of\ beam = 10\ mm\ mrad$ β =average beta function Lc= coulomb logarithm N= $10^9\ particles$ $\gamma\beta$ = beam momentum

Total Beam loss rate

$$\left(\frac{1}{\tau}\right)_{Total} = \left(\frac{1}{\tau}\right)_{HI} + \left(\frac{1}{\tau}\right)_{SCS} + \left(\frac{1}{\tau}\right)_{ES} + \left(\frac{1}{\tau}\right)_{IBS}$$

With Analytical Formulas

Lattice Type (β_{y-max})	HI $(10^{-6}s^{-1})$	SCS $(10^{-4}s^{-1})$	$(10^{-4}s^{-1})$	Total loss rate $(10^{-4}s^{-1})$	Beam Lifetime (s)
33m	2.17	7.65	2.34	9.47	1055
100m		27.3	2.10	27.5	363
200m		94.6	1.99	90.0	111
300m		208	1.90	195	51



BETACOOL For Beam Dynamics:

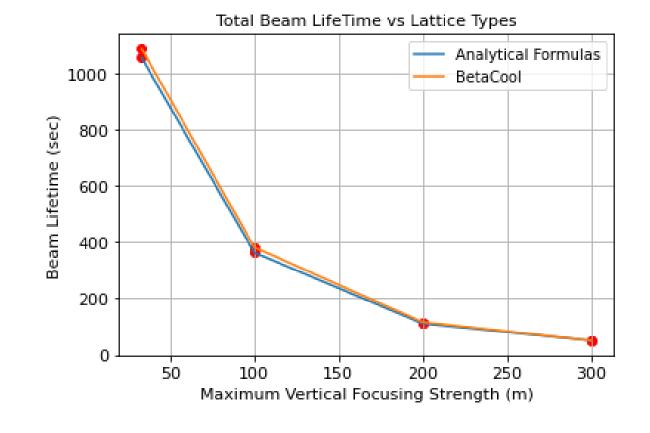
"BETACOOL program is to simulate long term processes (in comparison with the ion revolution period) leading to variation of the ion distribution function in 6 dimensional phase space."

BETACOOL For Beam Dynamics:

Betacool reflects more realistic picture of an accelerator BETACOOL program is to simulate long term processes (in comp evolution period) leading to variation of the ion distribution function in 6 mikov, R.Pivin C:\Users\SaadS\OneDrive\Desktop\betacool-ad626853f6d2... Beam Effects ECOOL Ring **Russian Federation** Task | Growth Rates step multiplier Jie Wei Martini Bjorken-F Gas Bjorken-M ✓ High energy assumption (HEA) Collision Point HEA with No dispersion Particle Losses Coulomb logarithm Intrabeam Scattering Additional Heating Stochastic Cooling Gated Stoch, Cooling 0.001095 Beam | Parameters Emittance Injection Stability Ion beam Bunched Horizontal Task | RM... Vertical RMS Dynamics Integration step Longitudinal 0.002 : [sec] Atomic mass Particle number : [sec] Maximum 0.01 1E5 Reference time [sec] 1.5E5 Charge number Emmitance definition Step fitting Life time (Decay) 1E15 **Enclosed Persents** • Step multilpier 2 Transverse, % : [%] Max growth 20 Longitudinal, % 68 Page 18 Mean Longitudinal Invariant

Find betacool.exe

Open


Comparison b/w Beam loss calculations

Analytical Formulas

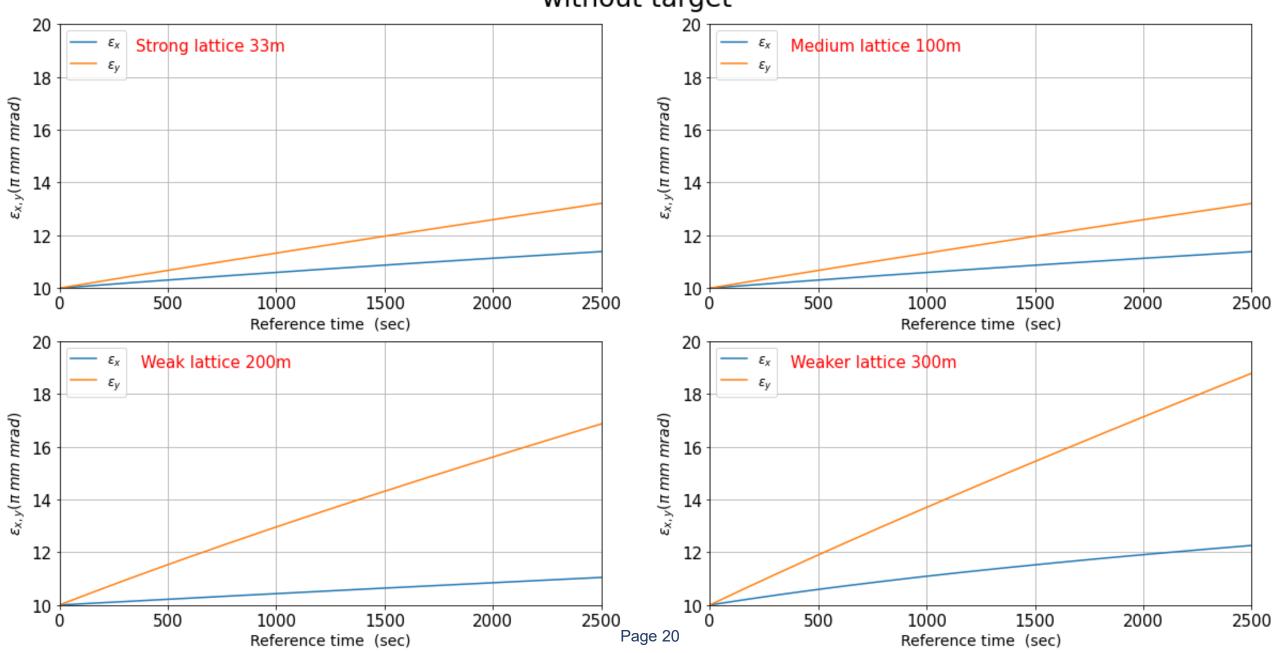
Lattice Type (eta_{y-max})	Total loss rate $(10^{-4}s^{-1})$	Beam Lifetime (s)
33m	9.47	1055
100m	27.5	363
200m	90.0	111
300m	195	51

With Betacool

Lattice Type (β_{y-max})	Total loss rate $(10^{-4}s^{-1})$	Beam Lifetime (s)
33m	9.197	1087
100m	2.62	382
200m	8.60	116
300m	1.94	51

Analytical formulas and BetaCool results showing an agreement.

HI (Hadronic Interactions), SCS (Single Coulomb Scatterings), IBS (Intera-Beam Scatterings) Martin Model



Emittance Growth starting with $\varepsilon_{x,y} = 10\pi \, mm \, mrad$ without target

Conclusion

Summary:

- Preliminary design of prototype EDM ring with pure electrostatic bendings.
- Most dominating effect is Single Coulomb Scatterings
- Lattice with $\beta_{v-max} \leq 100 \, m$ is preferable for longer beam lifetime.

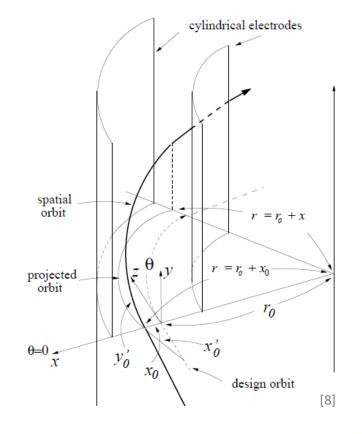
Outlook:

- These calculations will be performed with electromagnetic bendings.
- Further investigations on beam and spin dynamics.
- Conceptual studies of PTR design is under consideration.

THANK YOU

REFERENCES

- 1. A.D. Sakharov. Violation of CP Invariance, C Asymmetry, and Baryon Asymmetry of the Universe. Soviet Physics Uspekhi, 34(5):392–393, May 1991.
- 2. M.S. Rosenthal. Experimental Benchmarking of Spin Tracking Algorithms for Electric Dipole Moment Searches at the Cooler Synchrotron COSY. PhD thesis, RWTH Aachen U., 2016.
- 3. Vera Poncza, Extensive Optimization of a Simulation Model for the Electric Dipole Moment Measurement at the Cooler Synchrotron COSY
- 4. PhD thesis, RWTH Aachen 2021
- 5. J. Pretz et al. Measurement of Permanent Electric Dipole Moments of Charged Hadrons in Storage Rings. Hyperfine Interact., 214(1-3):111–117, 2013.
- 6. JEDI collaboration F. Abusaif et al. Feasibility Study for an EDM Storage Ring. Technical Report arXiv:1812.08535, Forschungszentrum Jülich Germany, Dec 2018. * Temporary entry *.
- 7. A. Lehrach et al. Design of a Prototype EDM Storage Ring. In Proceedings, 23rd International Spin Physics
- 8. Symposium: Ferrara, Italy, pages 10–14, 2018.
- 9. H. Grote and F. Schmidt. CERN MADX introduction. http://mad.web.cern.ch/mad/madx.old/Introduction/doc.html,2002.
- 10. R. Baartman. Electrostatic Bender Fields, Optics, Aberrations, with Application to the Proton EDM Ring. Technical report, TRIUMF, Dec 2013.
- 11. R. Talman. Miscellaneous Calculations for a Fully Electro-static Proton EDM Experiment, Version II. unpublished, April 2010.
- 12. P. Grafström. Lifetime, Cross-sections and Activation. In CERN Accelerator School, vacuum in accelerators, Platja d'Aro, Spain, 16-24 May 2006, pages 231–226, 2007.
- 13. P. Möller. Beam-Residual Gas Interactions. In CERN Accelerator School: Vacuum Technology, Snekersten, Denmark,
- 14. 28 May 3 Jun 1999, pages 155–164, 1999.
- 15. F. Hinterberger. Beam-Target Interaction and Intrabeam Scattering in the HESR Ring. Emittance, Momentum Resolution and Luminosity. Technical Report JUEL- 4206, Forschungszentrum Jülich GmbH (Germany), Feb 2006.


TRANSFER MATRIX FOR ELECTROSTATIC DEFLECTOR

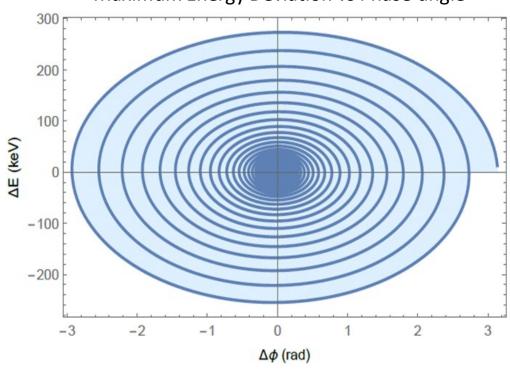
For pure electrostatic deflectors

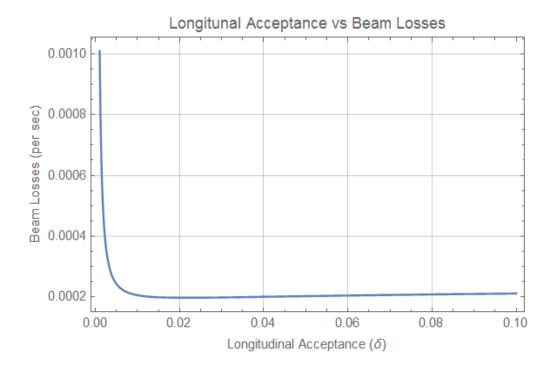
- Transfer matrices derived from Hamiltonian (a brilliant work done by Rick Bartmaan) [7]
- For non-relativistic and the cylindrical electrodes

with
$$\xi=\sqrt{2}$$
 and $\eta=0$ $\xi=$ horizontal focusing strength $\eta=$ vertical focusing strength

$$\mathsf{EB} = \begin{bmatrix} 0.85418 & 3.30871 & 0 & 0 & 0 & 1.29205 \\ -0.0817166 & 0.85418 & 0 & 0 & 0 & 0.724056 \\ 0 & 0 & 1 & 3.47954 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ -0.724056 & -1.29205 & 0 & 0 & 1 & 2.94856 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

ESTIMATION OF BEAM LOSSES


$$\Delta E_{max} = \pm \sqrt{\frac{2 \beta^2 e U E}{\pi q (\alpha_c - 1/\gamma^2)}}$$


For Strong Lattice

with
$$U = 4 kV$$
, $\alpha_c = 0.554$

 $\Delta E_{max} > \epsilon_{max}$

