Tests of a polarimeter for laser-driven proton beams at the 45-MeV cyclotron JULIC

JuSPARC (Jülich Short-Pulsed Particle and Radiation Center)

M. Büscher, I. Engin, P. Fedorets, C. Zheng, N. Schnitzler, H. Pfeifer, C. Schneider R. Engels, O. Felden, C. Kannis, A. Lehrach H. Glückler, H. Soltner, M. Lennartz, R. Swaczyna, H. Feilbach

29. 09. 2022 I Chuan Zheng

Mitglied der Helmholtz-Gemeinschaft

MOTIVATION

laser-driven polarized particle beams

MOTIVATION laser-driven polarized proton beams

MOTIVATION Polarized hydrogen gas target

Test with Lamb-Shift Polarimeter @ IKP

JÜLICH Forschungszentrum

Page 4

POLARIMETRY R&D Polarimeter for laser-driven proton beams

l = 200 λ , δ_l = 5 λ , λ ~ 800 nm

 P_L is the laser power, \mathcal{E}_p is the peak proton energy, O is the total charge, *P* is the beam polarization. **assuming start from P=100%**

P_L [PW]	\mathcal{E}_p [MeV]	<i>Q</i> [nC]	P [%]
1.34	53	0.26	82
5.37	105	1.3	65
12.1	133	2.4	57
21.5	152	3.1	56

Luling Jin et al. PRE 102 (2020) 011201(R) J. Thomas et al. Phys. Rev. Accel. Beams 23 (2020) 064401

POLARIMETRY R&D Solid-State Nuclear Track Detectors(SSNTDs)

After etching with NaOH

Mitglied der Helmholtz-Gemeinschaft

Polyallyldiglycolcarbonat (PADC)

29. September 2022 | C. Zheng Page 6

proton burst during < 10⁻¹² s a burst of ~10¹⁰ protons SSNTDs have no dead time high detection efficiency good spatial resolution insensitive to X-rays, γ-rays

2nd layer

P. B. Price & R. L. Fleischer, Annu. Rev. Nucl. Sci. 21 (1971) 295-334

3rd layer

POLARIMETRY R&D First polarimeter for laser-driven protons

w/o Si

Mitglied der Helr

with Si

One shot: 1.3x10⁸ protons

 $P = 0.08 \pm 0.03$ (stat.) ± 0.08 (syst.)

No polarization!

Raab et al. Phys. Plasmas **21**(2014)023104

15

Page 7

ng

POLARIMETRY R&D Polarimeter for 45-MeV proton beams

POLARIMETRY R&D Polarimeter for 45-MeV proton beams

Mitglied der Helmholtz-Gemeinschaft

29. September 2022 | C. Zheng

Page 9

POLARIMETRY R&D

Polarimeter

Polarimeter installed at the Irrad station

Front view of Irrad station

Top view

Side view

Mitglied der Helmholtz-Gemeinschaft

29. September 2022 | C. Zheng

Page 10

POLARIMETRY R&D Polarimeter for 45-MeV proton beams

Page 11

POLARIMETRY R&D Particle identification: proton & carbon ion

POLARIMETRY R&D Particle identification: track polar angles

POLARIMETRY R&D Left-right asymmetry: pol. & unpol. runs

Shot No.3 (unpol. beam, 45 MeV, 6 hrs)Shot No.5 (pol. 60%,45 MeV, 6 hrs)

Forschungszentrum

POLARIMETRY R&D Polarimeter LE Pol at JULIC

JÜLICH Forschungszentrum

LS Pol

Hor. Asymm. (Left - Right) : 0.53 ± 0.02 --> Pol. P_v = (62 ± 2)% Ver. Asymm. (Up - Down) : 0.04 ± 0.02

Mitglied der Helmholtz-Gemeinschaft

29. September 2022 | C. Zheng

Page 15

POLARIMETRY R&D Polarimeter for 45-MeV proton beams

¹²C Levels

E _{level} (MeV)	JP	Г (eV)	Decay
0	0+	stable	no
4.44	2+	10.8 x10 ⁻³	$^{12}C^* \rightarrow ^{12}C + \gamma$ (% IT = 100)
7.65	0+	9.3	¹² C*→3α (% α ≈ 100)
9.64	3-	46 keV	¹² C*→3α (% α ≈ 100)

background from *p*-C inelastic events

Q(α) = - 7.367 MeV

POLARIMETRY APPLICATION Polarimeter for ³He ion beams

Tandetron Lab@FZJ

POLARIMETRY APPLICATION Polarimeter for ³He ion beams

Track profiles & orientations

Zheng, C., et al. Polarimetry for ³He ion beams from laser-plasma interactions (Accepted) Preprint: doi:10.20944/preprints202208.0240.v1

POLARIMETRY APPLICATION Laser-driven pol. ³He exp. at

Mitglied der Helmholtz-Gemeinschaft

29. September 2022 | C. Zheng

Page 19

POLARIMETRY APPLICATION Pol. gas target & Polarimeter

Fedorets, P., et al. A High-Density Polarized ³He Gas-Jet Target for Laser-Plasma Applications *Instruments* 6(2022)18

Laser energy : 50 J Pulse duration : 2 ps Focal spot size : $15x20 \ \mu m^2$ Peak intensity : $1x10^{19} \ W \cdot cm^{-2}$ ASE contrast : 10^{-10}

Data recorded on one side of the polarimeter at north: 6 laser shots / day at PHELIX

Mitglied der Helmholtz-Gemeinschaft

29. September 2022 | C. Zheng

Page 20

- Polarized particle beams from laser-driven acceleration becom a hot topic in the laser-plasma community.
- New polarimetry is urgently required for laser-plasma exp.
- Our group has developed one kind of polarimeter based on solid-state nuclear track detector(CR-39).
- First use of the polarimeter with a pre-polarized ³He gas jet target at PHELIX has been realized.

BACKUP

Subline

POLARIMETRY R&D Production of neutron in AI aperture

Neutron estimation: ~ 6x10⁷ s⁻¹·sr⁻¹, mostly < 5 MeV

POLARIMETRY R&D Scan image parameters: track profile

Directly measured parameters

- **M**_i : Major axis of opening mouth
- **M**_i : Minor axis of opening mouth
- $\mathbf{X}_{\mathbf{T}}$: Total length of track projected in horizontal direction
- **m** : width of track end (or **M2**)
- **AREA** : area within the shape
- **Estimated parameter**
- $\mathbf{Z}_{\mathbf{T}}$: Depth of track end projected in perpendicular direction

Page 24