Workshop on Polarized Sources Targets and Polarimetry 2022

Rahul Suvarna, 27 September 2022

Contents

- Introduction
- Lab Experiments
- Noise Model
- Noise at 1V Input Range
- COSY Result
- Conclusion

GSI Helmholtzzentrum für Schwerionenforschung

Introduction

Beam Position Monitors

Beam Position Monitors

- Beam Position Monitors (BPM) are diagnostic tools used to locate the beam during a run.
- A well known example of a BPM is a Capacitive Pick-up BPM.
- A charge, proportional to the beam current and it's distance, is produced on the pickup plates which is then used to interpret the beam position.

- A Rogowski coil is a toroidal coil wound around a non-conducting core.
- It works on the principle of induction.
- When a beam passes through the Rogowski coil, a signal is induced in it.

 $\frac{dI(t)}{\lambda}$ Ul

Rogowski Coil

- The Rogowski BPM is made of four Rogowski coil segments acting as the four quadrants.
- The Rogowski BPM is compact, highly sensitive, is easy to produce and has a very basic construction, making it cost effective.
- The coils are highly sensitive towards a certain frequency.
- Study the performance of the Rogowski BPM in comparison to other BPM types for example, Superconducting Quantum Interference Device (SQUID) based BPM.

Rogowski BPM installed inside a flange

Equivalent circuit of the coil segment

Lab Experiments

General Setup

- A fixed wire is used to simulate the beam. lacksquare
- Any position of the beam can be achieved by moving the coil around.
- This setup provides a controlled environment to test & calibrate the Rogowski BPM.

General testing setup circuit diagram

Signal-to-Noise Ratio Measurements

Lock-In Amplifier Noise

Lock-In Amplifier Noise

Lock-in amplifier noise characteristics

- Zurich Instruments HF2LI.
- 50Ω load at the input.

• ~12
$$nV/\sqrt{Hz}$$
.

Signal-to-Noise Ratio Measurements

Cable Noise

Cable Noise

- Coaxial cable connected to the lacksquarelock-in amplifier input.
- 50Ω load at the end of the cable ullet

• ~15
$$nV/\sqrt{Hz}$$
.

Signal-to-Noise Ratio Measurements

Pre-Amplifier Noise

Pre-Amplifier Noise

Lock-in + Cable + Pre-amplifier noise characteristics

lock-in amplifier pre-amplifier

- Pre-Amplifier with gain ~10, $R_{out} = 500 k\Omega$.
- 50Ω load at the input.
- ~15 nV/\sqrt{Hz} when switched off.
- ~190 nV/\sqrt{Hz} when switched on.

Coil Impedance

Signal-to-Noise Ratio Measurements

Coil Impedance

parameter	value
R [Ω]	4.26 ± 0.24
L [µH]	34.09 ± 1.97
C [pF]	39.45 ± 2.28

Siglent SVA 1032X

GSI Helmholtzzentrum für Schwerionenforschung

Resonant function

$$F(\omega) = \frac{1}{\sqrt{\left(1 - \omega^2 LC + \frac{R}{R_{out}}\right)^2 + \left(\frac{\omega L}{R_{out}} + \omega RC\right)^2}}$$

GSI Helmholtzzentrum für Schwerionenforschung

U_{total}

10³ SNR 10² 2 3 4 1

RWTHAACHEN UNIVERSITY

 $SNR = \frac{U(a_0, \omega)}{U_{total}^{noise} \sqrt{2\Delta f}}$

Signal-to-Noise Ratio

Noise at 1V Input Range

Noise at 1V Input Range

Noise characteristics comparison at 1V input range

frequency (Hz)

COSY Result

Output of the BPM coil when the beam is running (orange) vs when the beam is absent (blue), beam frequency = 1.559 MHz

Beam frequency

Conclusion

Conclusion

- The Rogowski BPM is a new type of diagnostic tool based on the principle of *Electromagnetic Induction*.
- A study of the Signal-to-Noise Ratio (SNR) of the Rogowski BPM was performed.
- The SNR is found to be the best at and around the resonant frequency of the coil.
- The coils can be tuned to have the resonant frequency equal to the *revolution frequency* of the beam for optimum results.

Backup

Backup

- The box has capacitance of ~11.9 pF.
- to account for the box capacitance.

• We subtract it from the capacitance value that was obtained using the SVA

$$\Phi(x,y) = -\frac{2\mu_0 a I N_w}{\pi b} \left(\frac{1}{\sqrt{1-b^2}} - 1\right) \left(\frac{x+y}{R_t}\right)$$

$$U(a_0, \omega) = g \cdot \omega \cdot F(\omega) \left[-\Phi\left(\frac{a_0}{\sqrt{2}}, \frac{a_0}{\sqrt{2}}\right) + \Phi\left(\frac{-a_0}{\sqrt{2}}, \frac{-a_0}{\sqrt{2}}\right) \right]$$

 $SNR = \frac{U(a_0, \omega)}{U_{total}^{noise} \sqrt{2\Delta f}}$

Welch's method

Physics Institute III B

