Future

High-precision Møller Polarimetry at Jefferson Lab's Hall A

Eric King

Postdoctoral Research Fellow Temple University

PSTP22, September 2022

Polarized Sources Targets and Polarimetry 2022 Johannes Gutenberg University – Helmholtz Institute Mainz

Eric King

PSTP22 :: High-precision Møller Polarimetry at Jefferson Lab's Hall A

Temple University

Introduction	Foil Polarization	Levchuk Effect	Other Changes	Results	Future
●0000		000	00000	000000	00

Important References

Papers:

PREX2	10.1103/PhysRevLett.126.172502
CREX	10.1103/PhysRevLett.129.042501

Fe/Ni Polarizations 10.1016/j.nima.2022.167444

PREX2/CREX Polarimetry 10.48550/arXiv.2207.02150

Data:

Hartree-Fock Calculated Momentum distributions for bulk Fe

Repository: gitlab.com/dhamil/levchuk-dft-corrections/-/tree/master/ **File**: data_files/Fe_BBB93_shell_decomposition.csv

Temple University

• • • • • • • • • • • •

High-Precision Polarimetry for MOLLER and SoLID

- Stringent polarimetry requirements for two upcoming experiments to Hall A
- MOLLER: 0.40%

Introduction

- SoLID (PVDIS): 0.40%
- The plan is for both Compton and Møller polarimeters to meet this goal

Introduction	Foil Polarization	Levchuk Effect	Other Changes	Results	Future
00000		000	00000	000000	00

Polarimeter Schematic

Eric King

æ Temple University

Э

イロト イヨト イヨト イ

Spectrometer Description

- "Brute force" Møller polarimeter design
 - Target magnetically saturated in 4 Tesla field parallel to the beam line and perpendicular to the plane of the foil

L.V de Bever, J Jourdan, et al (1997) NIMA S0168-9002(97)00961-3

- QQQD setup
 - Four quadrupoles steer scattered Møller electrons into dipole
 - Dipole bends moller electrons below beam line towards Møller detector
- Møller detector
 - Spaghetti fiber lead block design calorimeter
 - Connected to 8 PMTs—4 left / 4 right

イロト イボト イヨト イヨト

Introduction	Foil Polarization	Levchuk Effect	Other Changes	Results	Future
00000	●○	000	00000	000000	00

Iron Foil Magnetization

- Extensive literature review of magnetization of Fe
- Demonstrate that the saturation polarization of an Fe target can be determined to ±0.23%
- We've budgeted for 0.25% syst unc. for foil magnetization, this allows for a 0.1% uncertainty for saturation and alignment

< 口 > < 同 >

Iron Foil Saturation

- Systematic error measurements taken at the end of CREX while ramping down the target holding field.
- Holding field strengths 4.0T, 3.2T, 2.8T, 2.4T, & 1T (not shown)
- Anomalous data at 2.8T will require additional systematic studies during MOLLER

Eric King

< 口 > < 同 >

Temple University

- Levchuk effect alters scattering angle of Møller scatters but not the momentum
- Can have significant effect on acceptance due to scatter from bound electrons with high atomic-momentum

Levchuk Effect:

1992 paper proposed intra-atomic motion of bound electrons is a significant source of systematic error.

https://doi.org/10.1016/0168-9002(94)90505-3

General Hydrogenic Modeling:

$$f_{unp}(p) = \sum_{j,n,l} \frac{C_{nl}^{j}}{P_{n}^{j}} \left(\frac{p}{P_{n}^{j}}\right)^{2} |\Phi_{nl}\left(\frac{p}{P_{n}^{j}}\right)|^{2}$$
$$f_{pol}(p) = \sum_{j} \frac{D_{32}^{j}}{P_{3}^{j}} \left(\frac{p}{P_{3}^{j}}\right)^{2} |\Phi_{32}\left(\frac{p}{P_{3}^{j}}\right)|^{2}$$

イロト イボト イヨト イヨト

Eric King

Improved Modeling for Levchuk Effect (cont'd)

Replacement of old hydrogenic wavefunctions for bound momentum of target elections with Hartree-Fock calculated distributions.

Source: https://doi.org/10.48550/arXiv.2207.02150 [2022] :: D.E.King; D.C. Jones, et al.

Eric King

Temple University

< D > < A > < B > < B >

Improved Modeling for Levchuk Effect (cont'd)

- Wavefunction cumulative distribution functions then used to generate events in Monte Carlo
- Although not shown here the substantitive difference between the Hartree-Fock and Hydrogenic modeling is the 1s momentum distribution.

Source: https://doi.org/10.48550/arXiv.2207.02150 [2022] D.E.King; D.C. Jones, et al.

< 個 > < ∃

Detector Collimator

Collimator designed and to be added to limit detector acceptance

- Will be milled from tungsten (hevimet)
- 6.4 cm thick
- Designed to be inserted into the detector window
- 5.0 cm vertical acceptance window
 - $\pm 7^{\circ}$ Møller acceptance

イロト イヨト イヨト イ

Eric King

Introduction	Foil Polarization	Levchuk Effect	Other Changes	Results	Future
00000		000	0●000	000000	00

Detector Collimator (cont'd)

- Top four PMTs behind collimator window active
- Bottom four PMTs inactive

 Very clean signal cut on active PMTs

▲ロト▲団ト▲目ト▲目ト 目 のみぐ

Eric King

Temple University

Introduction	Foil Polarization	Levchuk Effect	Other Changes	Results	Future
00000		000	○○●○○	000000	00

Target Move 30cm Upstream + Collimation

- Current setup restricts steering and overall acceptance at 11GeV
- Smaller than ideal Δθ_{COM} acceptance

- Moving target 30cm upstream allows natural separation and better steering with quads
- Larger $\Delta \theta_{COM}$ pass-through to detector = smaller Levchuk

Eric King

Temple University

Addition of GEM Detectors

New GEMs will be used to provide quantitative insights on poorly benchmarked corrections in simulation: multiple scattering and radiative corrections and Levchuk

- GEM—Gaseous Electron Multiplier detector
- Extract coordinate data of electron tracks as they pass through
- To be installed in time for MOLLER commissioning

Eric King

Temple University

Extracted kinematics from GEM data

- $\rho{:}$ 1 / momentum
- ϕ : Plane of scatter
- $\Delta \theta$: Angular offset from Møller stripe
 - θ : Scattering angle

$$\rho = f(\Delta \bar{y}, y)$$

$$\Phi = f(\Delta \bar{y}, y)$$

$$\Delta \theta = f(\Delta \bar{y}, y, x_1)$$

$$\theta = f(\Delta \bar{y}, y)$$

Eric King

These are functions of the preferred set of values derived from chamber coordinates and various coefficients $m_1, m_2, b_1, b_2, A, B, C, D$ derived from fitting functions

$$\begin{aligned} \Delta \rho &= \rho_{\text{beam}} - \rho_L - \rho_R \\ \theta_T^2 &= \Delta \theta^2 + \theta^2 \end{aligned}$$

Image: A matched block of the second seco

Temple University

CREX Asymmetry Measurements

- Significantly better agreement at points of high asymmetry when using Hartree-Fock wavefunctions for Levchuk calculation in Monte Carlo.
- Reduces systematic uncertainty from 40% to 10%

Source: https://doi.org/10.48550/arXiv.2207.02150 [2022] D.E.King; D.C. Jones, et al.

< D > < A > < B > < B >

CREX Results — Møller/Compton Agreement

Temple University

イロト イヨト イヨト イヨ

PSTP22 :: High-precision Møller Polarimetry at Jefferson Lab's Hall A

CREX Results — Møller/Compton Comparison

Temple University

イロト イヨト イヨト イ

PSTP22 :: High-precision Møller Polarimetry at Jefferson Lab's Hall A

Introduction	Foil Polarization	Levchuk Effect	Other Changes	Results	Future
00000		000	00000	000●00	00

CREX Results — Møller/Compton Comparison (cont'd)

- Møller measurements compared to Compton measurements that occurred within ±48 hours [note: error bars based on stat error]
- Unprecedented level of agreement during CREX between the Compton and Møller polarimeters in Hall A.
- The mean Compton/Møller ratio was 0.9995 ± 0.0008; ratio consistent with 1 at the 0.1

< D > < A > < B > < B >

Systematics from PREX2 and CREX

Polarimetry error dominated by systematic errors

- Largest error was foil polarization uncertainty, new review further constrains this
- Current dependence constrained by 2007 systematic studies

Uncertainty	PREX2	CREX
$\langle A_{zz} \rangle$	0.20	0.16
Beam Trajectory	0.30	0.00
Foil Polarization	0.63	0.57
Dead Time	0.05	0.15
Charge Normalization	0.00	0.01
Leakage Currents	0.00	0.18
Laser Polarization	0.10	0.06
Accidentals	0.02	0.04
Current Dependence	0.42	0.50
Aperture Transmission	0.10	0.10
Null Asymmetry	0.12	0.22
July Extrapolation	0.23	_
Total	0.89	0.85

- イロト (個) (注) (主) (日) ヨー シタの

Temple University

Introduction Foil Polarization Levchuk Effect Other Changes Results Future 00000 00 000 0000 00000 00

Systematics from PREX2 and CREX (Cont'd)

	Uncertainty	PREX2	CREX
	$\langle A_{zz} \rangle$	0.20	0.16
PREX2: Beam orbit uncertainties,	Beam Trajectory	0.30	0.00
	Foil Polarization	0.63	0.57
corrected by adding in	Dead Time	0.05	0.15
additional position	Charge Normalization	0.00	0.01
tracking	Leakage Currents	0.00	0.18
	Laser Polarization	0.10	0.06
CREX: Unexpected	Accidentals	0.02	0.04
leakage current from	Current Dependence	0.42	0.50
high-current	Aperture Transmission	0.10	0.10
experiment in Hall-C	Null Asymmetry	0.12	0.22
	July Extrapolation	0.23	-
	Total	0.89	0.85

▲口×▲御×▲臣×▲臣× 臣 の名の

Temple University

PSTP22 :: High-precision Møller Polarimetry at Jefferson Lab's Hall A

MOLLER Systematics Goals

Challenges:

- Ensuring target saturation
- Eliminating leakage currents during measurements
- Current dependence systematic studies

Uncertainty	CREX	MOLLER
$\langle A_{zz} \rangle$	0.16	0.14
Beam Trajectory	0.00	-
Foil Polarization	0.57	0.30
Dead Time	0.15	0.05
Charge Normalization	0.01	0.01
Leakage Currents	0.18	-
Laser Polarization	0.06	0.06
Accidentals	0.04	0.04
Current Dependence	0.50	0.20
Aperture Transmission	0.10	-
Null Asymmetry	0.22	0.05
Total	0.85	0.40

▲□▶▲□▶▲□▶▲□▶ ▲□ ション

Temple University

evchuk Effe

Other Changes

Comments

• • • • • • • • • • • •

Møller Polarimetry Working Group: Eric King, Donald Jones, Jim Napolitano, Paul Souder, Faraz Chahili, David Gaskell, William Henry and Kent Paschke.

Temple University

since Pbeam is constant this axis is still proportional

Target Alignment Backup Slide

Target Alignment – Plan

- Moller polarimeter target ladder has the ability to rotate.
- Foil magnetization is maximized when the foil plane plane is perpendicular to B-field.
 - \swarrow Covered in Fe foil polarization publication.
- Systematic studies will be need to be run in order to determine foil alignment.
- Compare data to Stoner-Wolfarth model predictions.

10µm Foil at 2.5T γ^2 / ndf 30.12/14 0.86 Polarization (% Proh 0.007353 D0 0.8367 ± 0.001888 **p**1 0.5345 ± 0.00624 0.82 Beam 0.8 Target Polarization 0.78 0.76 PREX-2 commissioning data - foil angle Data taken systematics study on 10um foil. 0.74 3/18/2019 8 Target Angle (degrees) Note: The v-axis label is "improperly" labeled: however, $A_{\text{meas}} = \frac{R_{\uparrow\uparrow} - R_{\downarrow\uparrow}}{R_{\star\star} + R_{\downarrow\star}} = -P_{\text{beam}} P_{\text{target}} \langle A_{zz} \rangle$

 $R_{\uparrow\uparrow} + R_{\downarrow\uparrow} = \text{beam} - \text{carger} (-227)$

• • • • • • • • • • • •

Eric King