DEVELOPMENT OF POLARIZED SOURCES BASED ON MOLECULAR PHOTODISSOCIATION

29.09.2022 I Chrysovalantis Kannis

Workshop on Polarized Sources Targets and Polarimetry 2022 (PSTP22) Session: Polarized Sources

• Accelerators

- i. Conventional accelerators
- ii. Laser-plasma accelerators

Polarized nuclear fusion

- i. Four-nucleon reactions
- $d + d \rightarrow n + {}^{3}He + 3.27 \text{ MeV}$ (neutron branch)
- $d + d \rightarrow p + {}^{3}H + 4.03 \text{ MeV}$ (proton branch)
- ii. Five-nucleon reactions
- d + ${}^{3}\text{H} \rightarrow n$ + ${}^{4}\text{He}$ + 17.58 MeV
- d + ${}^{3}\text{He} \rightarrow p$ + ${}^{4}\text{He}$ + 18.34 MeV

- poorly understood
- direct measurements are required
- control the angular distribution of products
- increase the reaction rate

Polarized nuclear fusion

- ii. Five-nucleon reactions
 - Angular distribution of fusion products: $W(\theta) = 1 \frac{1}{2}P_z^d P_z^y + \frac{3}{2}P_z^d P_z^y \sin^2 \theta + \frac{1}{4}P_{zz}(1 3\cos^2 \theta)$,

Polarized nuclear fusion

- ii. Five-nucleon reactions
 - Fusion rate for unpolarized reactants:

4/6 of the unpolarized combinations give $I_{total} = 3/2$

2/6 of the unpolarized combinations give $I_{total} = 1/2$

Polarized nuclear fusion

- ii. Five-nucleon reactions
 - Fusion rate for unpolarized reactants: 2/3

4/6 of the unpolarized combinations give $I_{total} = 3/2$

2/6 of the unpolarized combinations give $I_{total} = 1/2$

Only 4/6 of the unpolarized substates contribute to the fusion reaction!

Polarized nuclear fusion

- ii. Five-nucleon reactions
 - Fusion rate for unpolarized reactants: 1

100% of the polarized combinations give $I_{total} = 3/2$

$$I_1 = 1$$

$$I_2 = 1/2$$

$$I_{total} = 1/2$$

$$I_{total} = 3/2$$

Increased efficiency by 50%!

 $\Delta E \sim MeV$

Conventional polarization methods

Stern-Gerlach spin-separation

required time for spin-separation: ms limited by the beam divergence density limit: $\sim 10^{12}$ cm⁻³ highest flux: $\sim 10^{17}$ H/s

Spin-exchange optical pumping

two-step process: (i) optical pumping of a mediating species (ii) polarization transfer through spin-exchange collisions characteristic time in a spin-exchange cell: ms highest density: $\sim 10^{14}$ cm⁻³ (low polarization) highest flux: $\sim 10^{18}$ H/s (low polarization)

Conventional polarization methods

Stern-Gerlach spin-separation

required time for spin-separation: ms limited by the beam divergence density limit: $\sim 10^{12}$ cm⁻³ highest flux: $\sim 10^{17}$ H/s

Spin-exchange optical pumping

two-step process: (i) optical pumping of a mediating species

(ii) polarization transfer through spin-exchange collisions

characteristic time in a spin-exchange cell: ms

highest density: $\sim 10^{14}$ cm⁻³ (low polarization)

highest flux: $\sim 10^{18}$ H/s (low polarization)

Molecular photodissociation

in situ production production time: ns density $> 10^{19}$ cm⁻³

 Ω_i is the **projection** of the total electronic angular momentum of electronic state i along the AB bond axis. m is the **projection** of atomic angular momentum J along the bond axis. Conservation of angular momentum **projection** along the recoil direction yields the constraint:

$$\left(\Omega_{i}=m_{A}+m_{B}\right)$$

Hydrogen halides (HY)

• 3 excited electronic states play a role in photodissociation:

$$\begin{split} \text{HY}\left(X\ {}^{1}\Sigma_{0^{+}};\ \Omega_{g}=0\right)\ +\ \text{hf}\ \rightarrow\ \text{HY}\left(\alpha\ {}^{3}\Pi_{1};\ \Omega_{i}=\pm1\right)\ \rightarrow\ \text{H}\left(m_{H}=\pm\frac{1}{2}\right)\ +\ \text{Y}\left(m_{Y}=\pm\frac{1}{2}\right)\\ \text{HY}\left(A\ {}^{1}\Pi_{1};\ \Omega_{i}=\pm1\right)\ \rightarrow\ \text{H}\left(m_{H}=\mp\frac{1}{2}\right)\ +\ \text{Y}\left(m_{Y}=\pm\frac{3}{2}\right)\\ \text{HY}\left(\alpha\ {}^{3}\Pi_{0^{+}};\ \Omega_{i}=0\right)\ \rightarrow\ \text{H}\left(m_{H}=\pm\frac{1}{2}\right)\ +\ \text{Y}^{*}\left(m_{Y^{*}}=\mp\frac{1}{2}\right) \end{split}$$

• Photodissociation of HY can occur exclusively through one of these states:

$$\text{HI}\left(X\ {}^{1}\Sigma_{0^{+}};\ \Omega_{g}=0\right)\ +\ \text{hf}\left(213\ \text{nm}\right) \xrightarrow{A\ {}^{1}\Pi_{1}} \text{H}\left(m_{H}=\mp\frac{1}{2}\right)\ +\ \text{I}\left(m_{I}=\pm\frac{3}{2}\right)$$

$$\text{HI}\left(X\ {}^{1}\Sigma_{0^{+}};\ \Omega_{g}=0\right)\ +\ \text{hf}\left(266\ \text{nm}\right) \xrightarrow{\alpha\ {}^{3}\Pi_{1}} \text{H}\left(m_{H}=\pm\frac{1}{2}\right)\ +\ \text{I}\left(m_{I}=\pm\frac{1}{2}\right)$$

$$\text{HCI}\left(X\ {}^{1}\Sigma_{0^{+}};\ \Omega_{g}=0\right)\ +\ \text{hf}\left(213\ \text{nm}\right) \xrightarrow{\alpha\ {}^{3}\Pi_{1}} \text{H}\left(m_{H}=\pm\frac{1}{2}\right)\ +\ \text{CI}\left(m_{I}=\pm\frac{1}{2}\right)$$

Produced from photodissociation and detected with a pickup coil

Sofikitis et al., Phys. Rev. Lett. **121**, 083001 (2018)

Detection of magnetization quantum beats with a pickup coil

- Magnetic moment of hydrogen halides (HY) in the ground state: $\mu_{mol} = \mu_{I_H} + \mu_{I_Y} = g_{I_H} \mu_N I_H + g_{I_Y} \mu_N I_Y$
- Magnetic moment of hydrogen in the ground state: $\mu_H = \mu_S + \mu_{I_H} = g_S \mu_B S + g_{I_H} \mu_N I_H$

 $\mu_{B, N}$ are the Bohr and nuclear magnetons $\begin{cases} \mu_B = 9.274 \times 10^{-24} \text{ J/T} \\ \mu_N = 5.051 \times 10^{-27} \text{ J/T} \end{cases}$

 g_{S, I_H} are the electron and nuclear g-factors $\begin{cases} g_S = -2.002 \\ g_{I_H} = 5.586 \ \left(g_{I_D} = 0.857\right) \end{cases}$

• The absorbed photons (N_a) produce electron-spin-polarized atoms with magnetization:

$$M(t) = N_{a}g_{S}\mu_{B}m_{S} e^{-\frac{t}{\tau_{p}}} \cos^{2}\left(\frac{\omega t}{2}\right)$$

with τ_p : polarization lifetime and ω : angular hyperfine frequency.

Detection of magnetization quantum beats with a pickup coil

- A time-dependent magnetic flux $\Phi_B(t)$ is created through the coil: $\Phi_B(t) = M(t) A \mu_0$, where A: coil area and $\mu_0 = 4\pi \times 10^{-7}$ H/m (vacuum permeability).
- According to Faraday's law of induction, an electromotive force $\mathcal{E}(t)$ is induced: $\mathcal{E}(t) = -N_t \frac{d\Phi_B(t)}{dt}$, where $N_t = 4.5$ (number of turns).
- Expected signal: $\mathcal{E}(t) = V_R(t) + V_L(t) \Rightarrow -N_t A \mu_0 \frac{dM(t)}{dt} = V_R(t) \frac{L}{R} \frac{dV_R(t)}{dt}$ $\Rightarrow V_R(t) = N_t A \mu_0 \frac{dM(t)}{dt} - \frac{L}{R} \frac{dV_R(t)}{dt},$

where $R = 50 \Omega$ (load resistor) and L: inductance.

• For UV beams (213 nm or 266 nm) with an energy of a few mJ and a pulse duration of 150 ps, interacting with $\sim 10^2$ mbar of HY, a signal of the order of 10^{-1} mV can be detected with a 5-mm-long and 2-mm-diameter coil.

Page 18

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

UNIVERSITY OF CRETE

Spin-polarized H (SPH) density and focusing geometries

Photodissociation regimes

- i. "low"-density regime ([Y]<<[HY]):
 - 0.1% of HY molecules are dissociated
 - SPH density $\sim 10^{16}$ cm⁻³
 - depolarization via an SPH-HY complex
- ii. "high"-density regime ([Y]≫[HY]):
 - virtually all HY molecules are dissociated
 - SPH density $\sim 10^{19}$ cm⁻³

- depolarization via collisions between SPH and Y (depolarized within less than 1 ns)
- inert gas with a high heat capacity can cool down the SPH and lower the collision rate

Spiliotis et al., Chem. Phys. Impact 2, 100022 (2021)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ UNIVERSITY OF CRETE

Future developments

Production and detection of polarized proton beams from photodissociation (FZJ)

* EKSPLA

IR/UV Laser

Lamb-Shift polarimeter

for measurement of nuclear polarization

A. Hützen, PhD thesis (Heinrich-Heine-University Düsseldorf, 2021)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ UNIVERSITY OF CRETE

Nozzle

Page 20

Future developments

Production and detection of polarized proton beams from photodissociation (FZJ)

A. Hützen, PhD thesis (Heinrich-Heine-University Düsseldorf, 2021)

IIANEΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ UNIVERSITY OF CRETE

Page 21

