

"Present status of development of a polarized La target in the T-violation search with a slow neutron"

Ikuo IDE

Φ Lab. Department of Physics Nagoya University

and NOPTREX Collaboration

Why is there far more matter than antimatter?

Standard theory cannot explain the matter-dominated universe. There must be CP-violation somewhere .

Sakharov conditions

- Baryon number violation
- Departure from thermal equilibrium
- C, CP Violation

One solution : "existence of unknown CP-violation"

We Search for Unknown CP-violation through the T-violation search Using compound nuclear resonance.

Photon number density $n_{\rm b}/n_{\gamma} = 0.61 \pm 0.02 \times 10^{-9}$ Baryon number density

Standard Model

 $n_{\rm b}/n_{\gamma} = 10^{-18}$

P-violation measurements

P-P scattering

(15 MeV)

Helicity dependence of cross section

 $= - (1.7 \pm 0.8) \times 10^{-7}$

In nucleon-nucleon scattering, P-violation is $\simeq 10^{-7}$

Using Nuclear resonance

In compound nuclear resonance, the amplification is $\sim 10^6$, compare with P-P scattering.

Compound nuclear reaction with a Neutron


```
Helicity dependence of cross section at <sup>139</sup>La nuclear
```

 $= -(0.97 \pm 0.03) \times 10^{-1}$

In Compound nuclear resonance, P-violation is $\simeq 10^{-1}$

Forward scattering amplitude in the Compound nuclear resonance

Forward scattering amplitude in the Compound nuclear resonance

Discover T-violation

Measure : Difference in P-odd cross section between Up and Down spin. (neutron spins)

Helicity dependence of cross section at ¹³⁹La nuclear

 $= -(0.97 \pm 0.03) \times 10^{-1}$

In Compound nuclear resonance, P-violation is $\simeq 10^{-1}$

Forward scattering amplitude in the Compound nuclear resonance

Forward scattering amplitude in the Compound nuclear resonance

Largest systematics error of the T-violation search.

Pseudomagnetism V.Gudkov and H.M.Shimizu, pays. Rev. C95 045501 (2017)

Future experimental design of T-violation search at low field (0.1 T)

Polarize Target LaAlO₃ crystal (Nd³⁺ doped)

Merit

- Quadrupole interaction diagonalized on C_3 axis
- Achievement of the high polarization by the DNP (P. Hautle, M. Iinuma, 2000, NIM A)
- Increase of doping amount Nd

 \rightarrow Higher efficient polarization transfer \rightarrow Strong spin-lattice relaxation

One of the plan

Condition of the polarized target $\rightarrow 0.1$ K, 0.1 T

- Canceling the pseudo magnetic field
- Spin frozen for a long relaxation time.

Estimation of the Relaxation Time at 0.1 [T]

K.Ishizakietal., Nucl. Instr. and Meth. A 1020(2021)165845.

T1 measurement at the Al nuclei in the LaAlO₃ crystal

Measurement conditions

Use of thermal NMR signals without the DNP

Assumption of relaxation process via Electric Spin-Spin reservoir (SSR)

La relaxation time \cong Al relaxation time

Result : La nuclear similary, $T_1 > 1$ [hour]

Not Good for use as a target

Nd Conc. [mol %]	(Temp. , Mag. Field) ([K], [T])	_	 Relaxation Time at 0.1 T, 0.1 K
0.03	(0.1 K, 0.1 T)		T1 > 60 min

"Workshop on Polarized Source Target and Polarimetry 2022 (PSTP2022)", Sept. 26 - 30 "Development of a polarized La target for the T-violation search with slow neutrons" Ikuo IDE, Nagoya University, ΦLab

page 11

Assumption of relaxation process via Electric Spin-Spin reservoir (SSR)

Necessity of the optimization of Nd concentration

Estimation of the Relaxation Time at 0.1 [T] in RCNP, Osaka University.

T1 measurement at the Al nuclei in the LaAlO₃ crystal

Measurement of nuclear spin relaxation time in lanthanum aluminate for development of polarized lanthanum target

K. Ishizaki ^{a,*}, H. Hotta ^a, I. Ide ^a, M. Iinuma ^b, T. Iwata ^c, M. Kitaguchi ^d, H. Kohri ^{e,a}, D. Miura ^c, Y. Miyachi ^c, T. Ohta ^f, H.M. Shimizu ^a, H. Yoshikawa ^e, M. Yosoi ^e

^a Nagoya University, Furocho, Chikusa, Nagoya, 464-8602, Japan

^b Hiroshima University, Kagamiyama, Higashi-hiroshima, 739-8527, Japan

^c Yamagata University, Koshirakawa, Yamagata 990-8560, Japan

^d KMI, Nagoya University, Furocho, Chikusa, Nagoya, 464-8602, Japan

^e Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka, 567-0047, Japan

^f The University of Tokyo Hospital, Hongo, Bunkyo, Tokyo, 113-8655, Japan

ARTICLE INFO

Keywords: Solid polarized target NMR T-violation

ABSTRACT

The nuclear spin–lattice relaxation time (T_1) of lanthanum and aluminum nuclei in a single crystal of lanthanum aluminate doped with neodymium ions is studied to estimate the feasibility of the dynamically polarized lanthanum target applicable to beam experiments. The application of our interest is the study of fundamental discrete symmetries in the spin optics of epithermal neutrons. This study requires a highly flexible choice of the applied magnetic field for neutron spin control and favors longer T_1 under lower magnetic field and at higher temperature. The T_1 of ¹³⁹La and ²⁷Al was measured under magnetic fields of 0.5–2.5 T and at temperatures of 0.1–1.5 K and found widely distributed up to 100 h. The result suggests that the T_1 can be as long as $T_1 \sim 1$ h at 0.1 K with a magnetic field of 0.1 T, which partially fulfills the requirement of the neutron beam experiment. Possible improvements to achieve a longer T_1 are discussed.

1. Introduction

The feasibility of the polarized nuclear target of ¹³⁹La is explored for the study of the spin-related correlation terms in compound nuclear states induced by polarized epithermal neutrons, which introduces an enhanced sensitivity to the breaking of spatial and time-reversal and longer than several months after aging. This is a special case because, generally, SNP requires a long aging time to achieve high thermal polarization. In the case of ¹³⁹La, a magnetic field of 17 T and temperature of 0.01 K can provide a polarization of approximately 59%. One candidate target for the beam experiments is a metal target, which has been used in some beam experiments [9–11], because metal

Summary of past experiments

Measurement of polarization and relaxation time of ¹³⁹La nuclei (in Nd³⁺: LaAlO₃ Crystal) hyperpolarized by DNP

	Nd Conc. [mol %]	(Temp. , Mag. Field) ([K], [T])	Polarization [%]	Relaxation Time [min]	Relaxation Time at 0.1 T, 0.1 K
Don't Grow by Nagoya	0.3	(1.5 K, 2.3 T)	small		
Crystal was Growr by Nagoya	0.05	(1.3 K, 2.3 T)	0.2%	15 min	
	0.03	(1.5 K, 2.3 T)	20%	82 min	T1 > 60 min
	0.003		т		

- Best Nd concentration: 0.03 mol% (0.3, 0.03, 0.003 mol%)
- 0.03 mol % has Higher Polarization and longer Relaxation-time than 0.05 mol %
 - \rightarrow The appropriate amount of Nd concentration needs further study at lower Nd concentrations.

Required : Technique to control Nd concentration in the order of 0.001 mol % \rightarrow Growing crystals with different Nd concentrations

Growing LaAlO₃ Crystal (Doped Nd ion) - Floating-Zone Method-

DNP Experiment at Yamagata Univ. (2022.03)

⁴He pumping the refrigerator (glass Dewar)

DNP Experiment at Yamagata Univ. (2022.03)

grown by Nagoya

Sample Information

Nd³⁺ : LaAlO₃ Crystal

 Nd^{3+} conc. : 0.01 mol %

Sample size : Cylinder (ϕ 4 × 5 mm)

Detail of mount method

⁴He pumping the refrigerator (glass Dewar)

"Workshop on Polarized Source Target and Polarimetry 2022 (PSTP2022)", Sept. 26 - 30 "Development of a polarized La target for the T-violation search with slow neutrons" Ikuo IDE, Nagoya University, ΦLab

Temperature : 1.33 K Magnetic field : 2.336 T NMR Frequency : 14.505 MHz M. W. Frequency : 69.435 GHz

Measurement details

[1] Polarization of ¹³⁹La nucleus

Positive Polarization by DNP Measures all NMR peaks of La nucleus (= 7 peaks)

[2] Buildup Time of ¹³⁹La nucleus

Estimates relaxation time from BuildupTime

"Workshop on Polarized Source Target and Polarimetry 2022 (PSTP2022)", Sept. 26 - 30 "Development of a polarized La target for the T-violation search with slow neutrons" Ikuo IDE, Nagoya University, ΦLab

page 19

NOPTREX Neutron Optical Parity and Time-Reversal EXperiment

Summary of past experiments

Measurement of polarization and relaxation time of ¹³⁹La nuclei (in Nd³⁺: LaAlO₃ Crystal) hyperpolarized by DNP

	Nd Conc. [mol %]	Polarization [%]	Relaxation Time [min]	Date of measurement
Don't made by Nag	oya 0.3	small		Kyoto Univ.
Crystal made by Nag	0.05	0.2%	15 min	2021 at Yamagata Univ. (Nagoya Univ.)
	0.03	20%	82 min	Kyōto Univ.
	0.01	P > ~20%	T1 > ~120 min	2022 at Yamagata Univ. (Nagoya Univ.)
	0.003			Kyoto Univ.

Summary

- T-violation search (NOPTREX) require highly polarized target crystals with long relaxation times.
- Nd³⁺:LaAlO₃ Crystal is a strong candidate for La polarization. Best Nd³⁺ concentration: around 0.01 mol%

DNP Experiment @ Yamagata Univ.

 $Nd^{3+}:LaAlO_3 Crystal (Nd : 0.01 mol \%)$ @ B = 2.335 T, T = 1.3 K

- Polarization (Nd3+ concentrations of 0.01 mol %) reached $\sim 19.7 \pm 2.6$ %.
- not saturated polarization
- Buildup Time by DNP was measured as ~2 hours.
- Estimated nuclear relaxation time T1 from BuildupTime, longer than 2 hours.

Future Plan

- More accurate measurement of T1 at 0.01 mol %.
- Need to more Study the effect T1 & Polarization by Nd concentration .
 - More dilute Nd conc. than 0.01 mol %
 - confirm that the grown crystals (Nd Conc. 0.03 mol %) are consistent with the previous experiments.
- Growing large crystals

Statistics required for T-violation search @ J-PARC

Polarization Condition:

