HYPERFINE-SPECTROSCOPY MEASUREMENT OF METASTABLE HYDROGEN ATOMS WITH A SONA-TRANSITION UNIT

26TH SEPTEMBER 2022 I NICOLAS FAATZ

INTRODUCTION

 $\vec{J} = \vec{L} \otimes 1 + 1 \otimes \vec{S}$

$$\vec{F} = \vec{J} \otimes 1 + 1 \otimes \vec{I}$$

https://en.wikipedia.org/wiki/Hyperfine_structure

Member of the Helmholtz Association

26th September 2022

SONA TRANSITION UNIT

S. Aswani, Bachelor thesis, (2022)

Member of the Helmholtz Association

26th September 2022

SONA TRANSITION UNIT

S. Aswani, Bachelor thesis, (2022)

ZERO CROSSING CONSTRAINMENT

 $\omega_B >> \omega_{Larmor}$

ORIGINAL IDEA OF A SONA UNIT

For positive quantization axis $|\alpha_1\rangle = |\uparrow,\uparrow\rangle$ $|\beta_3\rangle = |\downarrow,\downarrow\rangle$

$$B \Rightarrow -B \qquad |\alpha_1\rangle \Leftrightarrow |\beta_3\rangle$$

HIGH POLARIZATION MEASUREMENT AT BNL

26th September 2022

Page 7

Forschungszentrum

BOUND BETA DECAY

$$\Lambda = \frac{\vec{S} \cdot \vec{P}}{\left|\vec{P}\right|} \qquad n \to H^*_{2S_{1/2}} + \bar{\nu}_e$$

- Two body decay → fixed trajectories and energies
- Antineutrinos \bar{v}_e are righthanded
- LSP positioned such that \bar{v}_e has spin up
- β_3 state is then forbidden
- Energy is in the range that the Lamb-shift polarimeter (LSP) can separate the single Hyperfine states

EXPERIMENTAL SET-UP

R. Engels, et al., Eur. Phys. J. D, vol. 75, no. 9, p. 257, (2021)

FIRST MEASUREMENT

Static magnetic field

$$\vec{B} \cdot \vec{\nabla} = 0 \qquad \Rightarrow \qquad B_r = -\frac{r}{2} \frac{\partial B_z}{\partial z}$$

$$B'_{z} = B_{0} \sin(k'z')$$
 $B'_{r} = -\frac{r}{2}B_{0}k\cos(k'z')$

P. Buske, Bachelor thesis, (2016)

Static magnetic field

$$\vec{B} \cdot \vec{\nabla} = 0 \qquad \Rightarrow \qquad B_r = -\frac{r}{2} \frac{\partial B_z}{\partial z}$$

 $B'_z = B_0 \sin(k'z') \qquad B'_r = -\frac{r}{2} B_0 k \cos(k'z')$

• Metastable $2S_{1/2}$ hydrogen atoms enter

P. Buske, Bachelor thesis, (2016)

Static magnetic field

$$\vec{B} \cdot \vec{\nabla} = 0 \implies B_r = -\frac{r}{2} \frac{\partial B_z}{\partial z}$$

 $B'_z = B_0 \sin(k'z') \qquad B'_r = -\frac{r}{2} B_0 k \cos(k'z')$

- Metastable $2S_{1/2}$ hydrogen atoms enter
- Lorentztransformation into the rest frame

 $F^{\mu\nu} = \Lambda^{\mu}{}_{\mu'}\Lambda^{\nu}{}_{\nu'}F^{\mu'\nu'}$

$$\Rightarrow \quad B_z = B_0 \sin(kz) \qquad \qquad B_r = -\frac{r}{2\gamma} B_0 k \cos(kz) \qquad \qquad E_\varphi = -\frac{\nu r}{2\gamma} B_0 k \cos(kz)$$

1.2 mT

• Static magnetic field

$$\vec{B} \cdot \vec{\nabla} = 0 \implies B_r = -\frac{r}{2} \frac{\partial B_z}{\partial z}$$

 $B'_z = B_0 \sin(k'z') \qquad B'_r = -\frac{r}{2} B_0 k \cos(k'z')$

- Metastable $2S_{1/2}$ hydrogen atoms enter
- Lorentztransformation into the rest frame

 $F^{\mu\nu} = \Lambda^{\mu}{}_{\mu\prime}\Lambda^{\nu}{}_{\nu\prime}F^{\mu\prime\nu\prime}$

$$\Rightarrow \quad B_z = B_0 \sin(kz) \qquad \qquad B_r = -\frac{r}{2\gamma} B_0 k \cos(kz) \qquad \qquad E_\varphi = -\frac{\nu r}{2\gamma} B_0 k \cos(kz)$$

Creation of photons leads to transitions

P. Buske, Bachelor thesis, (2016)

GSI

$$E_n = (2n - 1)hf$$

 $n \in \mathbb{N}$

HYPERFINE STATES

Page 16

$$|\beta_3\rangle = |m_F = -1, F = 1\rangle = |m_J = -\frac{1}{2}, m_I = -\frac{1}{2}\rangle$$

 $|\beta_4\rangle = |m_F = 0, F = 0\rangle = \frac{1}{\sqrt{2}} (|m_J = \frac{1}{2}, m_I = -\frac{1}{2}\rangle - |m_J = -\frac{1}{2}, m_I = \frac{1}{2}\rangle)$

BREIT-RABI EIGENSTATES FOR $\vec{B} = B_z \vec{e}_z$

THEORETICAL APPROACH

• Hamiltonian $H = H_{Hyp} + V_B(t) + V_{Stark}(t)$

$$H_{Hyp} = A \frac{\vec{I} \cdot \vec{J}}{\hbar^2} \qquad \qquad V_B(t) = \left(g_j \mu_B \frac{\vec{J}}{\hbar} - g_I \mu_K \frac{\vec{I}}{\hbar}\right) \cdot \vec{B}(t)$$

$$V_{Stark}(t) = e\vec{E}(t)\cdot\vec{r}$$

THEORETICAL APPROACH

• Hamiltonian $H = H_{Hyp} + V_B(t) + V_{Stark}(t)$

$$H_{Hyp} = A \frac{\vec{I} \cdot \vec{J}}{\hbar^2} \qquad V_B(t) = \left(g_j \mu_B \frac{\vec{J}}{\hbar} - g_I \mu_K \frac{\vec{I}}{\hbar}\right) \cdot \vec{B}(t) \qquad V_{Stark}(t) = e\vec{E}(t) \cdot \vec{r}$$

Page 20

Timedepending perturbation

$$H_{Hyp}|m_F,F\rangle = E_{m_F,F}|m_F,F\rangle \qquad \qquad |\psi\rangle = \sum_{F=|J-I|}^{J+I} \sum_{m_F=-F}^{F} c_{m_F,F}(t) \cdot e^{-iE_{m_F,F}\cdot t/\hbar} |m_F,F\rangle$$

$$\dot{c}_{\widetilde{F},m_{\widetilde{F}}} = -\frac{i}{\hbar} \sum_{F=|J-I|}^{J+I} \sum_{m_F=-F}^{F} c_{F,m_F} e^{-i \left(\frac{E_{F,m_F} - E_{\widetilde{F},m_{\widetilde{F}}}}{h_F} \right)^t} / \hbar \langle \widetilde{F}, m_{\widetilde{F}} | V(t) | F, m_F \rangle$$

THEORETICAL APPROACH

$$\dot{c}_{\beta_4}(t) = -\frac{i}{\hbar} \left(\frac{1}{2\sqrt{2}} e^{-i\left(\frac{At}{\hbar} + \varphi\right)} B_r(g_J \mu_B + g_I \mu_K) c_{\beta_3} + \frac{1}{2} e^{-i\frac{At}{\hbar}} B_z(g_J \mu_B + g_I \mu_K) c_{\alpha_2} - \frac{1}{2\sqrt{2}} e^{-i\left(\frac{At}{\hbar} - \varphi\right)} B_r(g_J \mu_B + g_I \mu_K) c_{\alpha_1} \right)$$

$$\dot{c}_{\beta_{3}}(t) = -\frac{i}{\hbar} \left(\frac{1}{2\sqrt{2}} e^{i\left(\frac{At}{\hbar} + \varphi\right)} B_{r} \left(g_{J} \mu_{B} + g_{I} \mu_{K} \right) c_{\beta_{4}} - \frac{1}{2} B_{z} \left(g_{J} \mu_{B} - g_{I} \mu_{K} \right) c_{\beta_{3}} + \frac{1}{2\sqrt{2}} e^{i\varphi} B_{r} \left(g_{J} \mu_{B} - g_{I} \mu_{K} \right) c_{\alpha_{2}} \right)$$

$$\dot{c}_{\alpha_2}(t) = -\frac{i}{\hbar} \left(\frac{1}{2} e^{iAt/\hbar} B_z (g_J \mu_B + g_I \mu_K) c_{\beta_4} + \frac{1}{2\sqrt{2}} B_r e^{-i\varphi} (g_J \mu_B - g_I \mu_K) c_{\beta_3} + \frac{1}{2\sqrt{2}} e^{i\varphi} B_r (g_J \mu_B - g_I \mu_K) c_{\alpha_1} \right)$$

$$\dot{c}_{\alpha_{1}}(t) = -\frac{i}{\hbar} \left(-\frac{1}{2\sqrt{2}} e^{i\left(\frac{At}{\hbar} - \varphi\right)} B_{r} \left(g_{J} \mu_{B} + g_{I} \mu_{K}\right) c_{\beta_{4}} + \frac{1}{2\sqrt{2}} B_{r} e^{-i\varphi} \left(g_{J} \mu_{B} - g_{I} \mu_{K}\right) c_{\alpha_{2}} + \frac{1}{2} B_{z} \left(g_{J} \mu_{B} - g_{I} \mu_{K}\right) c_{\alpha_{1}} \right)$$

JÜLICH

Forschungszentrum

OUTLOOK

Adjustment of the free parameter

 $\vec{B}(r,t),\lambda(v)$

$$\frac{g_{J}(H, 2S_{1/2})}{g_{e}} = 1 - 4.426352(11) \times 10^{-6}$$

QED-corrections

 $\frac{g_{\rm I}({\rm H},2{\rm S}_{1/2})}{g_{\rm p}} = 1 - 23(14) \times 10^{-9}$

 New method of neV energy spectroscopy

