The polarized deuteron target at COMPAS in 2022

Norihiro DOSHITA Yamagata University

> PSTP2022 Mainz Sep. 30 2022

Norihiro DOSHITA

Outline

- COMPASS experiment
- COMPASS PT system
 - 6LiD with muon beam
- Polarization
 - DNP
 - Polarization determination
- Long term operation
 - Relaxation time
- Other measurements

Outline

- COMPASS experiment
- COMPASS PT system
 - 6LiD with muon beam
- Polarization
 - DNP
 - Polarization determination
- Long term operation
 - Relaxation time
- Other measurements

COMPASS set up

Beam :

Polarized lepton beam : μ^+ , μ^- 50-280 GeV/c (80% polarization @ 160GeV) Hadron beam : π^+ , π , K⁺, K⁻,P

Target :

Polarized proton and deuteron target Liquid hydrogen target Nuclear target Many combinations of the beam & the target

History of COMPASS PT

Bielefeld, Bochum, Bonn, Illinois, Helsinki, Lisbon, Nogoya, Prague, Sacley, Yamagata

Year	Spin	Material	Cell configuration	Program (with muon beam)	
2002 – 2004	L, T	⁶ LiD	L: 60-60 cm, D: 3 cm	∆g/g, TMD	1
2006	L	⁶ LiD	L: 30-60-30 cm, D: 3 cm	∆g/g	Dheed
2007	L, T	NH ₃	L: 30-60-30 cm, D: 4 cm	TMD, g1	Phaser
2010	Т	NH ₃	L: 30-60-30 cm, D: 4 cm	TMD	
2011	L	NH ₃ (new)	L: 30-60-30 cm, D: 4 cm	g1,A1 with 200 GeV muon	
2014 - 2015	Т	NH ₃	L: 55-55 cm, D: 4 cm	TMD (DY with pion beam)	Î
2018	Т	NH ₃	L: 55-55 cm, D: 4 cm	TMD (DY with pion beam)	Phase2
2021 - 2022	т	⁶ LiD	L: 30-60-30 cm, D: 3 cm	TMD	

Transverse Momentum Dependent parton distributions

- 8 intrinsic transverse momentum dependent PDFs at LO
- Asymmetries with different angular dependences on hadron and spin azimuthal angles, ϕ_h and ϕ_s

Quark Tensor Charge (TC)

Nucleon Electric Dipole Moment (EDM)
$$d_{u,d}$$
 Quark EDM
 $d_{u,d}$ Quark EDM
 $\delta u, \delta d$ Quark TC

- Quark EDM predicted by BSM
- Split-SUSY model : quark EDM ~ 10^{-29} e cm (arXiv: 1506.04196)
- Present nEDM(d_n) upper limit : $d_N < 2.6 \times 10^{-26} \text{ e cm}$

 \rightarrow BSM effect not yet observed.

- Quark TC changes appearance of quark EDM.
 - \rightarrow Quark TC is important in determining the upper limit of quark EDM.
- Quark TC is related with Transversity PDF $h_1(x, Q^2)$

$$\delta q = \int_0^1 dx \left[h_1^q(x, Q^2) - h_1^{\bar{q}}(x, Q^2) \right]$$

Quark TC estimation

TC estimation

- <u>Analysis with experimental data</u>(#1-#4)
 COMPASS, HERMES, JLab
 - → Large uncertainty: more data of Transversity d-quark needed
- Lattice QCD calculation (#5-#10)
- Differences btw both methods

COMPASS Transversity results

#1 : M. Radici PacSPIN2019

- #2 : Radici, Bacchetta PRL 120 (18) 192001
- #3 : Kang et al. PRD 93 (2016) 014009
- #4 : Anselmino et al. PRD 87 (2013) 094019
- #5 #10 : Lattice QCD calculation

Outline

- COMPASS experiment
- COMPASS PT system
 - 6LiD with muon beam
- Polarization
 - DNP
 - Polarization determination
- Long term operation
 - Relaxation time
- Other measurements

COMPASS PT system

Dilution refrigerator

- 50mK
- 350mW cooling power at 300mK

Magnet

- 2.5T solenoid (Polarization, longitudinal) 50 ppm homogeneity
- 0.6T dipole (Transverse)
- 180mrad acceptance

Target cell

- 3 cells (30, 60, 30cm long) or 2 cells (55, 55 cm long)
- Diameter 3 or 4 cm

Microwave

- 2 sets of EIO (20W)
- 3 sets of Gunn Diode (3W)

NMR

• 10 cannels (3, 4, 3) or (5,5)

Downstream of mixing chamber

EIO microwave system

Gunn system in 2022

ELVA-1 3 W power

1.5 m far from DR Cannot be closer due to fringing field

Generation test in 2020

Norihiro DOSHITA

Target material loading

- About 400 g of 6LiD material in to 3 cells in 2022
- Material irradiated in 2000
- Storage in LN2 dewar
- Loaded under 80 K
- Collect materials for each cell independently after the data taking

Loading done in the LN2 bath

port of material cell

Deuteron target materials

<u>Figure of Merit</u> $PT_{FOM} = f^2 \times P_T^2 \times \rho \times F_f$

	ND ₃	D- butanol	⁶ LiD
P_T	0.30 - 0.40	0.80 **	0.55 (D)
			0.54 (⁶ Li)
ρ	1.00	1.12	0.820
f	0.300	0.238	0.250 (D)
			0.250 (⁶ Li)
F_{f}	0.58	0.62	0.52
PT _{FoM}	1 – 1.8	5.4	6.9

f: dilution factor ρ : density F_f : packing factor

-Normalized by ND₃ . -Magnetic field 2.5T - Relaxation time ⁶LiD 1500h at 0.42T and 60 mK.

** S.T. Goertz et al, NIM. A 526 (2004) 43.

Outline

- COMPASS experiment
 COMPASS PT system
 6LiD with muon beam
- Polarization
 - DNP
 - Polarization determination
- Long term operation
 - Relaxation time
- Other measurements

Dynamic Nuclear Polarization (DNP)

Polarization P of spin ½ at thermal equilibrium (boltzmann distribution)

D —	tanh	$\left(\begin{array}{c} \mu B \end{array} \right)$	
Г —	ιαππ	$\left(\overline{K_B T} \right)$	

 μ : magnetic moment B: magnetic field K_B: boltzmann constant T: temperature

Polarization at thermal equilibrium@2.5T

	electron	proton	deuteron
4.2 K	66.4 %	0.061 %	0.012 %
1.0 K	99.8 %	0.26 %	0.052 %
0.1 K	99.9 %	2.6 %	0.52 %

DNP: Transfer the high electron polarization to nucleon by MW

- Free radical dope to Material (NH₃, ⁶LiD)
- Electron spin relaxation < Nucleon spin relaxation

TE analysis for deuteron in 2022

1 % accuracy In total a few %

Polarization determination at DNP

$$P = E \cdot S$$

The enhancement factor can be measured By TE calibration at 2.5 T.

$$P_{TE} = ES_{TE}$$

$$S_{TE} = \frac{1}{E} P_{TE}$$

 $P_{TE=1K} = 0.0522789\%$ $P_{DNP} = ES_{DNP}$

Polarization can be determined with DNP NMR signal.

ured	Coil 1 2 3 4 5 6 7 8 9 10	1/E -10.47 -24.53 -24.31 -19.87 -22.36 -20.39 -36.62 -29.83 -31.9 -17.13	d1/E 0.12 0.11 0.074 0.077 0.097 0.097 0.079 0.084 0.073 0.12 0.1	d1/Erel -1.2 -0.47 -0.3 -0.39 -0.43 -0.23 -0.23 -0.25 -0.37 -0.59	E dE -0.09548 -0.04077 -0.04113 -0.05033 -0.04472 -0.04905 -0.0273 -0.03135 -0.03135 -0.05836	0.0011 0.00019 0.00013 0.0002 0.00019 0.00019 6.3e-05 8.2e-05 0.00012 0.00034	
-1.2 -1.3 -1.4 -1.5 -1.5 -1.6 -1.7 -1.8 -1.9		nhancemen	t factor	29 K	ent	Al 2 Datensatz : Tabel Funktion : A*x Chi^2/doF = 2.944 R^2 = 9.989404e-01 A = -3.6623e+01 +/-8.	u le7_AU X667e+00 4e-02 0.99 K
-2	.035).04	0.0)45	0.05	0.055
					Р	1	.00K

E = Enhancement factor

TE deuteron NMR measurements (1.0 K)

Coil #7 at 1.0 K

Norihiro DOSHITA

Gain factor measurement

coil	gain2015/2018	gain2022	2022/2015	cell average
1	216.201	214.12	0.990	
2	214.013	213.13	0.996	1.000
3	211.979	214.86	1.014	
4	213.52	214.38	1.004	
5	212.402	207.29	0.976	
6	211.6	208.94	0.987	0.995
7	213.843	216.14	1.011	
8	212.995	211.61	0.993	
9	215.306	211.09	0.980	0.994
10	213.928	215.77	1.009	

Polarization build up in 2022 (Deuteron)

Outline

- COMPASS experiment
- COMPASS PT system
 - 6LiD with muon beam
 - NH3 with hadron beam
- Polarization
 - DNP
 - Polarization determination
- Long term operation
 - Relaxation time
- Other measurements

Beam intensity : 10^8 /s for 5 s and then no beam for 10 s or more in 2018

Relaxation time

production	Material	Magnetic field	Relaxation time
2002 - 04	⁶ LiD	2.5 T	>15000 h
2006	⁶ LiD	1.0 T	~ 10000 h
2002 - 04	⁶ LiD	0.4 T	~ 1500 h in 2004
2022	⁶ LiD	0.6 T	~ 3000 h for +, ~ 5000 h for -
2007	NH ₃ (SMC)	0.6 T	~ 4000 h
2010	NH ₃ (SMC)	0.6 T	~ 9000 h
2015	NH ₃	0.6 T h-beam	~ 1200 h for + , ~ 1000 h for -
2018	NH ₃	0.6 T h-beam	~ 1200 h for + , ~ 1000 h for -
2018	NH ₃	0.0 T	~ 11 min. for positive
			~ 7 min. for negative

Outline

- COMPASS experiment
- COMPASS PT system
 - 6LiD with muon beam
 - NH3 with hadron beam
- Polarization
 - DNP
 - Polarization determination
- Long term operation
 Relaxation time
- Other measurements

EST Concept

- Equal Spin Temperature

-- Spin temperature can be applied during DNP.

-- The spin temperature is shared with other nuclei.

- Polarizing deuteron at first
- Measured 6Li and 7Li polarization
- \rightarrow Support the EST concept

Fig. 6. The polarizations of the ⁶Li and the ⁷Li nuclei versus that of the deuteron. The closed (open) squares are the measured polarization of ⁶Li (⁷Li). The lines are the prediction by EST concept. The measurements are consistent with the EST

concept. Norihiro DOSHITA

NIMA498(2003)101₂₉

EPR (Electron Paramagnetic Resonance)

Carbon temperature sensor : absorption of MW : high resistance=low temp.

<u>condition</u>

- MW power is constant
- Scanning magnetic field
- Mag. field corresponds to MW freq.
- MW Absorption : DNP \rightarrow increasing resistance

Optimization of DNP

Summary

- COMPASS PT has been running for 20 years.
- 2.5 T and 100 mK combination
- 6LiD have been used as deuteron target material.
- Property of material slightly changed.
- longer build up time, longer relaxation time
 - -- difference of positive and negative polarization

Back up

Relaxation time at 0 T

Dilution refrigerator

Accuracy of Polarization

proton 2015 and 2018

Table 1: Results of the TE calibration and the empty cell measurement in 2015 and in 2018.

Deuteron 2003

Table 3

Error $(\Delta P/P)$ estimated for the polarization measurement in 2003

	upstream (%)	downstream (%)
TE calibration error	3.38	1.84
Circuit nonlinearity	< 0.5	< 0.5
Enhanced signal fitting	0.1	0.1
Field polarity	0.2	0.2
Field shift	0.18	0.07
Q-curve off-centering	0.15	0.17
LF gain variation	0.087	0.037
Subtotal	3.43	1.83
Microwave effect	0.1	0.1
Total	3.5	1.9

tic uncertainty	
ity	
2-curve for TE	
-curve for enhanced signal	
g	
nal	
surement	

3.2

		201	15	2018		
	Coil	Calibration	Statistical	Calibration	Statistical	
	#	constant	error (%)	constant	error (%)	
	1	-38.13	0.52	-55.38	0.41	
	2	-17.71	1.70	-21.40	0.90	
	3	-27.36	0.47	-47.26	0.33	
	4	-21.33	1.14	-23.73	1.79	
-	5	-33.40	0.22	-43.10	0.39	
-	6	-15.06	1.20	-13.39	0.98	
	7	-9.00	1.77	-18.63	1.18	
a	8	-17.55	0.36	-33.67	0.43	
	9	-14.70	0.58	-13.91	1.26	
	10	-36.22	0.37	-42.25	0.57	
	0.8					