The Bochum NMR box and measurements with the VNA

MSc-thesis Florens Grimm

RUHR-UNIVERSITÄT BOCHUM INSTITUT FÜR EXPERIMENTALPHYSIK I HADRONENPHYSIK

Content

- Motivation: Polarization experiments
- **NMR-Spectroscopy**
- **Bochum NMR-box**

- VNA fundamentals:
 - Motivation for DG8SAQ VNWA 3
 - **S-Parameters**
- Measurements
 - **Experimental setup**
 - Fit procedure
 - TE-method
 - Results
- Summary / Outlook

Motivation: Polarization experiments

- Study of resonance and spin structure of nucleons
- Structure of matter:
- Polarization information is important to know to further study the structure of nucleons like protons and neutrons:
 - Valence quark vs virtual quark/antiquark pairs

- COMPASS
- Double polarized deep inelastic scattering at high energies
 - Contribution of quarks, gluons, angular momentum towards proton spin
 - Spin composition of the proton/neutron spin $\frac{1}{2}$

$$\frac{1}{2} = \frac{1}{2}(\Delta u + \Delta d + \Delta s) + \Delta G + L_{z}$$

- ELSA (Bonn), MAMI (Mainz)
- Scattering experiments with polarized beams and targets at medium energies
 - Study of nucleon resonance region

NMR-spectrometer

- Zeeman effect
- Magnetic field in z-direction leads to energy splitting
- Radio frequency coil provides oscillating magnetic field in x-direction
 - Realized as LC-circuit
- $B_x(t) = B_{x,0}\cos(\omega_0 t)$
- Alternating magnetic field drives spin-flip transitions:

$$\Delta E = \hbar \omega_0 = \hbar \omega_L$$

- Resonance condition can be achieved in two ways:
 - Frequency-sweep: Constant B-field and sweep frequency
 - Field-sweep: Constant frequency and sweep B-field (not practicable during DNP)
- Two types:
 - Continues wave NMR
 - Pulsed NMR
 (not used because one loose important information during ringing down of the pulse)

Polarization

- Polarization is connected with susceptibility
- complex susceptibility of sample:

$$\chi(\omega) = \chi'(\omega) - i \chi''(\omega)$$

Target material in coil modifies inductance:

$$L(\omega) = L_0(1 + 4\pi\eta\chi(\omega))$$
 η : effective filling factor

- Resonate coil with capacitor → LC-circuit
- Resonance frequency: $\omega_0 = 1/\sqrt{L_0C}$
- Changes in $\chi''(\omega)$
 - → changes in Q-factor of LC-circuit
 - → Changes in mean power loss of coil
 - → for constant current: change in voltage

$$\Rightarrow P = K \int_{-\infty}^{+\infty} \chi''(\omega) d\omega$$

- Internal fields in probe
 - → linewidth of signal
 - → Frequency scan required

Polarization ∝ Area under signal

Bochum NMR - box

Consists of three parts:

- RF board
- dc-offset board

AA

RF- schematics

RUHR UNIVERSITÄT RUB

Bochum NMR – box 2

Diode output voltage vs input RF voltage

SMS7630

Mixer output voltage vs input RF voltage

SMA1

Bochum NMR – box 3

Signals of ⁶LiD at 77K ad 2.5 T

Result: SNR is slightly better than that of the well known Liverpool NMR Modul!

NMR measurement with Vector Network Analyser

Idea: Elena Long, PSTP 2019 Knoxville

Thesis: MSc Florens Grimm, Bochum, 2022

Despite many problems such as the corona pandemic and lack of cooling water (leaks), the measurements could finally begin in February.

Motivation: DG8SAQ VNWA3

- Why the DG8SAQ VNWA3?
- Biggest Factor: Price
 - DG8SAQ VNWA + Low Noise Amplifier:
 - 500€ + 70€
 - Compared to:
 - RF-Generator + Q-Meter + additional components:
 - 10 000€ 50 000€
- VNWA would contain all necessary components to realize a polarization measurement
- Question:
- Does the VNWA3 allow precise and linear measurements over a wide range of polarizations (0.25% at thermal eq. up to >70%)

8 000€

47 000€

DG8SAQ VNWA3 Vector Network Analyzer

- VNA contains both a source and a receiver:
 - Source generates known stimulus signal
 - Receiver determines changes in stimulus signal caused by device-under-test (DUT)
- Stimulus Signal is injected into DUT:
 - Transmitted and reflected signal is measured
 - Compared to original signal

S-parameters

- Scattering Parameters (S-Parameters)
- high frequencies make it difficult to measure voltage or current
- related to measurements such as:
 - gain, loss, reflection coefficient
- Portion of the incident signal is taken as reference
- S-Parameters defined as ratios of signals
- Reflected or transmitted signal is compared to reference signal
- Stimulus Signal changes as it is reflected/transmitted at DUT
 - Transmitted signal experiences changes in magnitude and phase
- For NMR measurements: S_{21}

Components of a NMR-experiment

- Magnetic field: C-Magnet, B=2,5T
- Low temperature: Cryo-system, T=1K

Experiment - setup

For **linearity** and comparison reasons we used a series resonance circuit with same components

Experiment - setup

Magnetic field: $B \approx 2.5 Tesla$ Temperature: $T \approx 1 Kelvin$

Sample materials:

Lithium deuteride: ⁶LiD

• Larmor frequency: 16.3 MHz, $\lambda = 18 m$

Ammonia: NH3

• Larmor frequency: 106.4 MHz, $\lambda = 2.8 m$

TEMPO doped n-Butanol

• Larmor frequency: 106.4 MHz, $\lambda = 2.8 m$

(TEMPO=(2,2,6,6-tetramethylpiperidin-1-yl)oxidanyl)

NMR box
Tx

Tuning
box

Switch

λ/2-cable sample

VNA
Tx

Tuning
box

Ensures quasi parallel measurement in a minute change between NMR-box and VNA.

- Sample material polarized via DNP
 - Alternating signal detection with Bochum NMR-module and VNA setups
 - Connection between detection setup and nmr coil controlled by switch
 - Only one setup connected to nmr coil at a time

Signal preparation

- Resonance curve of LC-circuit: parabola
- Subtract background signal without NMR-Signal
- Baseline fit with polynomial function:

$$f_{fit} = c_0 + c_1 \cdot x + c_2 \cdot x^2 + c_3 \cdot x^3$$

- Data used in sections I and III
- Subtract polynomial fit from data
- Area under signal ⇔ Summation of fitted data (section II)

Calculate area under signal → Polarization

TE-method

Area under signal is proportional to polarization

$$P = K \int_{-\infty}^{+\infty} \chi''(\omega) d\omega$$

- Constant K needs to be determined for absolute polarization values:
 - Calibration with TE-polarization

$$P_{dyn} = \frac{P_{TE}}{F_{TE}} \cdot F_{dyn} = E \cdot F_{dyn}$$

- P_{TE} : calculated
 - Precise measurement of current magnetic field and temperature necessary
- F_{TE} : Signal measurement in thermal equilibrium (no DNP used)
- F_{dvn} : Signal area while using DNP
- E: Enhancement factor

Lithiumdeuterid ⁶LiD at 77K and 2.5T

- Lithium deuteride has a long relaxation time → no TE-signals
- Comparison by comparing signal-areas between VNA and NMRmodule
- Scaling factor SK:
 - Ratio of max. signal area of NMR and VNA
 - Ratio of min. signal area of NMR and VNA
 - → Mean of both scaling factors
- Result:
 - $SK = 1.60 \pm 0.06$
- Signal-areas align for smaller values but divert for higher values (may be a offset problem)

VNA

NMR

VNA skaliert

Ammonia NH₃

- TE-signals for ammonia possible→TE-method
- Scaled VNA areas and NMR areas align
 - Only TE-signals divert
- Maximal polarization of ~3% still to low → TEMPO n-Butanol

	VNA	NMR	
Scaling factor	1.60 ± 0.01		
Enhancement factor	17.3 ± 1.1	9.17 ± 0.07	
Polarization max.	$(3.20 \pm 0.21)\%$	$(2.74 \pm 0.02)\%$	
Polarization min.	$(-1.98 \pm 0.13)\%$	$(-1.67 \pm 0.01)\%$	
Rel. error ΔP/P	±0.066	±0.007	

23 PSTP2022 Mainz 26.-30.9.22 G. Reicherz: Bochum NMR box and measureme

UNIVERSITÄT

восним

TEMPO doped n-Butanol

- Higher max. polarization than for NH₃ expected
- TE-Signals possible → TE-method

	VNA	NMR
Scaling factor	1.81745 ± 0.00004	
Polarization max.	$(8.84 \pm 0.20)\%$	$(10.73 \pm 0.23)\%$
Polarization min.	$(-7.79 \pm 0.17)\%$	$(-9.46 \pm 0.21)\%$
Rel. error ΔP/P	±0.023	±0.021

TEMPO doped n-Butanol TE-signals

- TE-Signals of VNA show high noise compared to NMR-module
- But TE-signal area is important for polarization TE-method
- Error of TE-Signal area dominates polarization measurement

0.0325

0.0300

0.0225

TEMPO doped n-Butanol relaxation

- Determination of T_1 relaxation constant through exponential fit of relaxation process
- DNP → high polarization → turn off microwaves → relaxation process
- Exponential-Fit:

$$f_{fit} = y_0 + A \cdot e^{-\frac{x}{\tau}}$$

- Problems:
 - Low number of datapoints
 - Especially due to sharing of measurement time
 - → Final TE-polarization must be TE-polarization from TE-signal measurements
 - → Fit-parameter fixed to TE-values

	Α	τ	y_0
VNA	$(0.4 \pm 0.008)a.u.$	$(429 \pm 21)s$	$(0.0185 \pm 0.018)a.u.$
NMR	$(0.618 \pm 0.016)a.u.$	$(469 \pm 30)s$	$(0.0277 \pm 0.027)a.u.$

Summary/Outlook

- The VNA allows the precise measurement of the signal areas of NMR-signals
- Due to high noise in TE-Signals
 → determination of absolute polarization with
 VNA shows deviations compared to the NMR-module of up to 2 percentage points
- Possible solution:
 - Low pass filter could be used to reduce noise
- Future:
 - Measurements with asymmetry-method allow for independent verification of VNA linearity

Bibliography

- Talk: "DNP with Solid-State mm-Waves, 3D-Printed Components, & SDR-based NMR" by Elena Long
- Talk: "Polarized Solid Targets" by Gerhard Reicherz
- "Medical Physics" by Hartmut Zabel
- https://twitter.com/j bertolotti/status/1369962983074455552
- https://ep1.rub.de/poltarg/Forschung/webposter.jpg
- https://ep1.rub.de/poltarg/Forschung/Spin und Polarisation/
- https://ep1.rub.de/poltarg/Forschung/Das Labor/
- https://www.keysight.com/zz/en/assets/7018-04258/brochures/5991-3892.pdf
- https://download.tek.com/document/70W_60918_0_Tek_VNA_PR.pdf
- https://www.teachspin.com/pulsed-nmr
- http://mri-q.com/why-is-t1--t2.html
- https://www.henrimenke.com/PPII/V28.pdf

